本篇记录下用stata进行中介分析,其中,自变量,中介变量和因变量均为连续变量。
中介分析可以用命令 sem ,即进行结构方程模型也是用这个命令,只不过中介分析没有测量模型而已。
其中,自变量(X)为 EC ,中介变量(M)为 SDO ,因变量(Y)为 forei 。
结果如下,可以看到,报告的是标准化系数,X到M结果显著,M到Y显著,控制M之后,X到Y不显著了。
对直接效应,间接效应和总效应进行估计的结果如下,最后一列为标准化系数,但是,没有相应的z值,和95%CI
使用命令 estat stdize 可以得到不同路径相应的标准化统计量。
路径a,b和c’的结果如下:
路径ab和总效应结果如下:
此外,还有个命令可以直接报告中介效应结果,即 medsem
结果如下,报告了两种检验中介效应的方法,以及中介效应是否存在的结论。
通过命令 help medsem 后可以详细了解该命令。
除了上述提到的两种检验中介效应的方法外,还有bootstrap法。
具体介绍可参见文献:
Fritz, M. S., &MacKinnon, D. P. (2007). Required Sample Size to Detect the Mediated Effect. Psychological Science, 18 (3), 233-239.
stata的实现方式是:
抽取5000个样本,时间有些长,得等会儿……结果如下:
sem 结构方程模型是社会科学研究中的一个非常好的方法。该方法在20世纪80年代就已经成熟,可惜国内了解的人并不多。“在社会科学以及经济、市场、管理等研究领域,有时需处理多个原因、多个结果的关系,或者会碰到不可直接观测的变量(即潜变量),这些都是传统的统计方法不能很好解决的问题。20世纪80年代以来,结构方程模型迅速发展,弥补了传统统计方法的不足,成为多元数据分析的重要工具。 结构方程模型分析:结构方程模型是一种建立、估计和检验因果关系模型的方法。模型中既包含有可观测的显在变量,也可能包含无法直接观测的潜在变量。结构方程模型可以替代多重回归、通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标间的相互关系。结构方程模型 (structural equation modeling,SEM)是一种建立、估计和检验因果关系模型的方法。它可以替代多重回归、通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标间的相互关系。
为何要用结构方程模型?
很多社会、心理研究中所涉及到的变量,经常不能准确、直接地测量,这种变量称为 潜变量 ,如工作自主权、工作满意度等。传统的统计分析方法不能妥善处理这些潜变量,而结构方程模型能同时很好地处理这些潜变量及其指标。
矩形是可视变量draw observed,椭圆形是潜变量draw unobserved
B站资源【推荐视频】https://www.bilibili.com/video/BV1PW411E7kz?p=14
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)