扫描电子显微镜
,主要用于电子显微成像,接配电子显微分析附件,可做相应的特征分析,
最常用的是聚焦
电子束
和样品相互作用区发射出的元素特征
X-射线
,可用EDS或者WDS进行探测分析,获得微区(作用区)元素成分信息,而EDS或者WDS这类电子显微分析附件却来源于EPMA。
SEM就是一个电子显微分析平台,分析附件可根据用户需要来选配,有需要这个的,有需要那个的,因此
扫描电镜
结构种类具有多样性,从tiny、small、little
style,to
middle、large、huge
style.
就EDS或WDS分析技术来讲,在SEM上使用,基本上使用无
标样
分析,获得很粗糙的
半定量
结果。
而EPMA在SEM商品化10年前,就已经开始实用了,其主要目的,就是要精确获得微米尺度晶粒或颗粒的成分信息.
主要分析手段是WDS,一般配置4个WDS,基于此,EPMA结构比较单一,各品牌型号结构差距不大。EMPA追求电子显微分析结果精准,因此
电子光学
设计不追求高分辨,电子显微分析对汇聚束的要求相匹配即可。
早期EPMA成像手段主要采用同轴
光学显微镜
,然后移动样品台或移动汇聚电子束,找到感兴趣区,当前依然保留同轴光镜,用来校准WD。EMPA对电子光学系统工作条件的稳定性要求超过SEM很多很多,控制系统增加了一些
负反馈
机制,确保分析条件和标样分析保持很小的误差。
SEM,EDS,XRD的区别,SEM是扫描电镜,EDS是扫描电镜上配搭的一个用于微区分析成分的配件——能谱仪。能谱仪(EDS,Energy Dispersive Spectrometer)是用来对材料微区成分元素种类与含量分析,配合扫描电子显微镜与透射电子显微镜的使用。XRD是X射线衍射仪,是用于物相分析的检测设备。扫描电子显微镜(scanning electron microscope,SEM,图2-17、18、19)于20世纪60年 代问世,用来观察标本的表面结构。其工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样 品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子 束同步的扫描图像。图像为立体形象,反映了标本的表面结构。为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束 的轰击下发出次级电子信号。 目前扫描电镜的分辨力为6~10nm,人眼能够区别荧光屏上两个相距0.2mm的光点,则扫描电镜的最大有效放大倍率为0.2mm/10nm=20000X。
EDS的原理是各种元素具有自己的X射线特征波长,特征波长的大小则取决于能级跃迁过程中释放出的特征能量△E,能谱仪就是利用不同元素X射线光子特征能量不同这一特点来进行成分分析的。使用范围:
1、高分子、陶瓷、混凝土、生物、矿物、纤维等无机或有机固体材料分析;
2、金属材料的相分析、成分分析和夹杂物形态成分的鉴定;
3、可对固体材料的表面涂层、镀层进行分析,如:金属化膜表面镀层的检测;
4、金银饰品、宝石首饰的鉴别,考古和文物鉴定,以及刑侦鉴定等领域;
5、进行材料表面微区成分的定性和定量分析,在材料表面做元素的面、线、点分布分析。
X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析。广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)