如果非要说SEO和SEM的共性的话,那么1、都是基于搜索引擎这个重要的载体。2、在展现形式上都是基本的标题,描述,关键词,显示URL ,访问URL。当然,SEO是在网页内相关位置嵌入这些内容,而SEM是在凤巢后台操作的。3、在搜索引擎表现上最核心的目的,都是优化排名,获取流量。
个人觉得,SEO和SEM虽然只是一字母之差,其实是完全不同的两件事情。更严格来说,SEO是一种技术手段,而SEM是一种营销方式。
1、从表现形式上来看,SEO是自然抓取,获得是搜索引擎的免费流量,页面在搜索引擎结果的标识应该是"百度快照“;SEM是付费搜索,是花钱买流量,页面在搜索引擎结果的标识,应该是”广告“。SEM的结果是排在自然抓取结果之上的;
2、从优化方式看,SEO更着眼于网站本身,是根据搜索引擎spide的抓取机制和偏好,去优化你的网站或页面,例如网站关键词,标题描述的撰写,网站结构的标准化,网站的原创内容占比,网站的图文分离等等,以及各种内链外链的方式获取流量,从而在搜索引擎的自然结果抓取中,被搜索引擎收录并获得好的排名,更多依靠的是技术和网站的优化。
SEM可能是获取流量和排名更便捷的方式,从表象来看,就是购买相应的关键词,通过广告后台进行出出价和广告语的撰写,即可在前台看到你的搜索结果,从而给网站带来流量。在具体的优化方式上,关键词选取,(SEM关键词的选取范围要比SEO广泛的多),匹配模式,账户结构,合理出价,撰写优化创意,优化落地页,查看数据报告,进行数据分析等等,是一个更复杂的体系。优化落地页只是整个SEM优化过程中的一个环节,而非全部。
3、从考核效果的方式来看,SEO会去看网站排名和收录数量。SEM更多就是看ROI,即投入产出比。
所以,SEO和SEM都是让你在搜索引擎上获取排名和流量的方式,但是有本质的不同。SEO更像是修炼内功,专注做好网站的优化;而SEM是通过付费的方式,更大范围的,主动的获取尽可能多的流量。
简单的讲,SEM是用来观察材料表面形貌的,XRD是用来检测材料晶体结构的,使用完全不同的仪器。具体说明如下:SEM
是scanning electron microscope的缩写,指扫描电子显微镜是一种常用的材料分析手段。
扫描电子显微镜于20世纪60年代问世,用来观察标本的表面结构。其工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。图像为立体形象,反映了标本的表面结构。为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束的轰击下发出次级电子信号。
目前扫描电镜的分辨力为6~10nm,人眼能够区别荧光屏上两个相距0.2mm的光点,则扫描电镜的最大有效放大倍率为0.2mm/10nm=20000X。
它是依据电子与物质的相互作用。当一束高能的人射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时,也可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。扫描电子显微镜正是根据上述不同信息产生的机理,采用不同的信息检测器,使选择检测得以实现。如对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息;对x射线的采集,可得到物质化学成分的信息。正因如此,根据不同需求,可制造出功能配置不同的扫描电子显微镜。
XRD
即X-ray diffraction ,X射线衍射,通关对材料进行X射线衍射,分析其衍射图谱,获得材料的成分、材料内部原子或分子的结构或形态等信息的研究手段。
X射线是一种波长很短(约为20~0.06┱)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离(10-8nm)相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布喇格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式——布喇格定律:
2d sinθ=nλ
式中λ为X射线的波长,n为任何正整数,又称衍射级数。其上限为以下条件来表示:
nmax=2dh0k0l0/λ,
dh0k0l0<λ/2
只有那些间距大于波长一半的面族才可能给出衍射,以此求纳米粒子的形貌。
当X射线以掠角θ(入射角的余角)入射到某一点阵平面间距为d的原子面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。布喇格定律简洁直观地表达了衍射所必须满足的条件。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布喇格条件的反射面得到反射,测出θ后,利用布喇格公式即可确定点阵平面间距、晶胞大小和类型根据衍射线的强度,还可进一步确定晶胞内原子的排布。这便是X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法的理论基础。而在测定单晶取向的劳厄法中,所用单晶样品保持固定不变动(即θ不变),以辐射束的波长作为变量来保证晶体中一切晶面都满足布喇格条件,故选用连续X射线束。如果利用结构已知的晶体,则在测定出衍射线的方向θ后,便可计算X射线的波长,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。
X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是体心立方结构,β-Fe并不是一种新相而铁中的α—→γ转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究,对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。在金属中的主要应用有以下方面:
物相分析 是 X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应用。
精密测定点阵参数 常用于相图的固态溶解度曲线的测定。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可得到单位晶胞原子数,从而确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。
取向分析 包括测定单晶取向和多晶的结构(见择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。
晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。
宏观应力的测定 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测量点阵平面在不同方向上的间距的变化,可计算出残留应力的大小和方向。
对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。
合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。
结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。
液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。
特殊状态下的分析 在高温、低温和瞬时的动态分析。
此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研究近完整晶体中的缺陷如位错线等,也得到了重视。
X射线分析的新发展:金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。
X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域.
X射线是波长介于紫外线和γ射线间的电磁辐射。X射线管是具有阴极和阳极的真空管,阴极用钨丝制成,通电后可发射热电子,阳极(就称靶极)用高熔点金属制成(一般用钨,用于晶体结构分析的X射线管还可用铁、铜、镍等材料)。用几万伏至几十万伏的高压加速电子,电子束轰击靶极,X射线从靶极发出。电子轰击靶极时会产生高温,故靶极必须用水冷却。
XRDX-射线衍射(Wide Angle X-ray Diffraction)主要是对照标准谱图分析纳米粒子的组成,分析粒径,结晶度等。
应用时应先对所制样品的成分进行确认。在确定后,查阅相关手册标准图谱,以确定所制样品是否为所得。
提到吉利汽车几乎无人不知无人不晓,但几何汽车呢?可能会有很多人都不太了解,其实它是吉利汽车旗下的一个高端纯电车系列,在首款车型几何A上市后有着不错的反响,而这次它的同门师弟几何C上市后,我想它应该会受到广大消费者的喜欢。
毕竟被吉利汽车寄予厚望的几何C并没有太多天花乱坠的概念,而是拿出了压箱底儿的本事——凭借几何汽车自主研发、行业首创的SEM智能能量管理系统,打造出续航精准度更高的纯电SUV。那几何C在配置方面到底做的如何?又有哪款值得推荐呢?希望下面的新车分析对您购车有所帮助。
车型介绍
几何C作为继几何A推出后的第二款新车,定位纯电紧凑型SUV。设计方面,几何C延续了家族化的“多维流动生命体”的设计理念,同时它并未采用常规的封闭是格栅而是在下方加入了主动式的进气格栅,根据车速自行调整开合角度,达到有效散热、降低风阻、增加续航的目的,官方称几何C的风阻系数为0.273Cd。
侧面来看线条简洁流畅,吸引消费者的还是悬浮式车顶和隐藏式门把手的设计。整体尺寸为4432/1833/1560mm,轴距为2700mm。同时,新车采用的18英寸轮毂并且刹车卡钳采用了绿色喷涂,凸显其新能源车型的特质。相对来看,此次几何C在内饰以及三电系统上的提升更为关键。
进入车内,整体的内饰布局与几何A一致,但在细节的变化则尤为明显。首先便是中控仪表的位置,将空调按键进行实体化,在行车过程中控制会有更好的反馈,并且E-touch的误触机率大、看不清等问题也得以解决,从浅色改为深色,即使是强光照射也能看的清楚。
最后便是这款车主要的核心——动力部分,几何C提供400km以及550km两种续航版本,其中,NEDC续航里程550km版本,采用的150kW的永磁同步电机,搭配容量为70kWh的三元锂电池组。采用自主研发的SEM智能能量管理系统,通过算法体系进一实现更低的能耗以及更高效的动能回收,在理论层面上,续航可以提升至少40%。
其中,几何C搭载的博世IBOOSTER能量回收系统,能将制动能量最大限度转化为电能存储在电池中,而作为纯电车型耗电大户的空调系统,几何C搭载的智能热泵空调系统,能从外界吸收能量,辅助车辆在低温环境下提升续航里程,而电驱余热回收系统还能将电驱系统产生的热量循环利用,转移到电池包的加热中,减少了不必要的能量消耗。
配置解析
看完车型简介,相信大家对全新几何C车型有了初步的了解。下面我会从低至高递增方式,解析每个不同版本车型的配置差异,看看哪个版本更值得购买。
几何C优选续航版 400km C
补贴后售价:12.98万元
推荐等级:★★
作为入门版车型,大家在配置表上不难看出新车算是一个比较常规的配置。安全配置方面配有主、副驾驶位安全气囊、胎压监测、制动力分配(EBD/CBC)、刹车辅助(EBA/BAS/BA)、牵引力控制、车身稳定控制、自动驻车、陡坡缓降、无钥匙启动、电池预加热等功能。同时,标配5英寸全液晶仪表、12.3英寸中控液晶屏、外后视镜电动调节(加热)、PM2.5过滤装置等配置。个人认为这样的入门车型配置虽然不低,但使用功能尤其是实用功能偏少,结合这样的售价以及400km的续航,在产品层面表现力不足。
几何C优选续航版 400km C+
补贴后售价:13.98万元
推荐等级:★★★
作为相对入门版车型高一级的车型,除入门版车型配备后驻车雷达、定速巡航、远程启动功能、手机互联、车联网、OTA在线升级、LED远近光灯组、自动头灯、大灯延时、后排出风口、温区控制等功能,相对C+版本仅增加1万元预算,但在配置上丰富了很多,如果说在400km之内挑选车型,我更为推荐该版本,如果您是选择高续航还要丰富的配置,接下来您慢慢看。
几何C优选续航版 400km C+ Pro
补贴后售价:14.98万元
推荐等级:★★★★
作为400km续航的顶配车型,在售价方面同样是以1万元为单位向上递增,相对C+版本加入了倒车影像、电动天窗、无钥匙进入、前排座椅加热、LED日间行车灯、后雨刷、空气净化器等配置,个人觉得 400km版本车型每次递增都会增加一些实用配置,不过该版本车型即将突破15万元大关,所以我认为该版本性价比不高。
几何C甄选续航版550km C++
补贴后售价:16.28万元
推荐等级:★★★★
作为此次主打的550km续航版本,550km C++版本相对C+ Pro在配置上增加了360度全景影像、不可开启式全景天窗、内置行车记录仪、外后视镜电动折叠、锁车折叠功能、AR底盘透视等配置,相对购车预算增加了1.3万元,同时续航里程也升级至550km。
几何C甄选续航版550km C++ Pro
补贴后售价:18.28万元
推荐等级:★★★
最后便是顶配车型,咱们还是先看看配置部分,同样式550km续航版本,在C++版本基础上增加了前/后排头部气帘、并线辅助、车道偏离预警、车道保持辅助、道路交通识别、主动刹车/主动安全系统、全速域自适应巡航、自动泊车入位、手机无线充电、驾驶位电动座椅等功能,可以说相差的2万元购车预算基本都在安全配置,如果你问我多花2万元值吗?我认为很值,但这个基本包含的驾驶辅助配置真的有必要选择?至少在我看来没必要。一款补贴后将近20万元的车型可选择性很多了,毕竟吉利几何这个品牌主打的还是家用,这些配置来看并不是特别需要。
编辑点评:对于几何C这款车我是比较看好的,整体设计而言相较几何A都有很多很多可说的配置,但价格方面,尤其是顶配车型近乎20万元的售价确实不是首选车型,但相对来说次顶配的C++车型,550km的高续航以及配置相差并不多,我更为推荐家庭使用。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)