沸石分子筛的结构图

沸石分子筛的结构图,第1张

分子筛的结构特征可以分为四个方面、三种不同的结构层次。第一个结构层次也就是最基本的结构单元硅氧四面体和铝氧四面体,它们构成分子筛骨架。相邻的四面体由氧桥连结成环。环是分子筛结构第二层次,按成环的氧原子数划分,有四元氧环、五元氧环、六元氧环、八元氧环、十元氧环和十二元氧环等。氧环通过氧桥相互连结,形成具有三维空间的多面体。

图4-4 丝光沸石光性方位

(Na2,K2,Ca)[AlSi5O12]2·7H2O

斜方晶系

Ng=1.477~1.487

Nm=1.475~1.485

Np=1.472~1.483

Ng-Np=0.004~0.005

(±)2V=76°~90°

a‖Nm,b‖Ng,c‖Np,光轴面‖(100)

化学组成 一般Na+K>Ca,在碱金属中 K 的含量很少,以Na为主。成分中可含少量的Fe、Mg。

结晶特点 晶体呈针状或纤维状,有时也呈细小的长柱状。常以束状、扇状、放射状、丝状、发状、纤维状、致密状、球粒状等集合体形式产出。解理{010}、{100}完全。

光性特征 白色或褐黄色、浅玫瑰色,薄片中无色透明,含 Fe2O3时呈红色。负低到中突起。干涉色一级灰,平行消光(有时可有小的消光角,<4°),负延性。二轴晶,光性正或负,光轴角大。

鉴别特征 丝光沸石以低的折射率(常为负中—低突起)为特征,可与多数沸石区别。与钠沸石的区别则可根据光轴角和延性,后者光轴角小,正延性。与交沸石不同处是丝光沸石折射率低,平行消光。片沸石和钙沸石光轴角小而折射率较丝光沸石高。斜发沸石和丝光沸石常共生,二者可根据延性区别之。杆沸石干涉色高,折射率也较高,延性可正可负,与之区别。

产状及其他 丝光沸石在基性和中酸性火山岩、凝灰岩中常呈晶簇或脉状、杏仁状产出。也可作为火山玻璃的水化产物或在沉积岩中成自生矿物产出。在海相沉积岩中常与水白云母、高岭石、海绿石等共生。在某些碎屑岩中可作为胶结物产出,与蛋白石、玉髓等共生。在一些蚀变的凝灰岩中可大量产出,与蒙脱石、皂石、绿鳞石、蛋白石共生。丝光沸石常与斜发沸石共生,见于蚀变的流纹岩或珍珠岩中,常为脱玻化的产物。在变质岩的浊沸石相也可见到。

第一作者:Chin-Te Hung、Linlin Duan

通讯作者:赵东元院士、李伟教授

通讯单位:复旦大学

DOI: 10.1021/jacs.2c01444

全文速览

合成具有均匀空间梯度和结构强化效应的多级多孔结构仍然是一个巨大的挑战。在本文中,作者开发出一种胶束动态组装策略,成功合成出一种具有梯度多孔结构的沸石@介孔二氧化硅核壳纳米球(ZeoA@MesoS)。研究发现,复合胶束的尺寸可以随着溶胀剂的增加而动态变化,该溶胀剂可原位作为构建模块用于梯度介孔结构的模块化组装。所制备出的ZeoA@MesoS纳米球在溶剂中高度分散,内核具有均匀的微孔,并且介孔壳呈现梯度管状。将其用作纳米反应器时,该多级梯度多孔结构能够实现从溶液到内部活性位点的毛细管导向快速传质。因此,ZeoA@MesoS催化剂在长链棕榈酸的酯化反应中表现出高达75%的产率,并且即便在水干扰下也具有优异的稳定性,因为水干扰可以被ZeoA核捕获,从而推动化学平衡。此外,锚定Pd的ZeoA@MesoS催化剂在大分子N-甲基吲哚的C–H芳基化反应中也表现出优异的催化转化性能(98%)。与不含沸石核的Pd-枝晶状介孔二氧化硅相比,耐水特性可以使催化产率显著提高26%。

背景介绍

近年来,一些基于分子组装概念的策略已被证明可以将多级孔隙生长引导为各种形状和多孔结构,其主要方法是采用宏观/介观尺度组装单元作为孔隙导向剂,从而形成大孔和介孔的多级组装。然而,利用该方法合成出的大多数产品均为微米级的块状材料,没有均匀的形状和自然的梯度结构。另一种获得多级多孔结构的策略是构筑多孔核壳结构,通过控制核与壳中孔隙的大小来实现。迄今为止,科研人员在合成具有均匀形貌和孔径的多孔核壳结构材料方面付出了巨大努力。然而,这种均匀的多孔结构在催化反应等实际应用中的性能远不能令人满意,因其不利于催化过程中的动态变化和复杂的耦合机制。因此,在精细的控制水平上模拟自然的多级多孔结构仍然具有挑战性。

在本文中,作者开发出一种胶束动态组装策略,成功合成出一种具有空间梯度多孔结构的沸石@介孔二氧化硅核-壳结构(ZeoA@MesoS)。所制备出的ZeoA@MesoS材料表现出高度单分散性,具有球形形貌和中心-径向梯度介孔通道(2-10 nm),在核中具有均匀的微孔(0.5 nm)。通过动态改变作为自组装基本单元的复合胶束模板,可以精确的控制介孔尺寸。更重要的是,这种梯度多级多孔结构可以很好地模拟自然界中的多级多孔系统,自发地表现出从溶液到内部活性位点的毛细管导向快速传质用于化学反应。作为概念性验证,长链羧酸与醇的酯化反应被选为评估ZeoA@MesoS纳米反应器优异性能的模型反应。与纯MesoS相比,ZeoA@MesoS在含水量为6%的溶液中仍表现出显著提高的产率(增加29%),且初始反应速率提高了3倍。研究表明,ZeoA核和梯度多孔壳结构可以提供有效的捕水能力和从壳层到内核的快速传输。此外,通过在ZeoA@MesoS的介孔壳层上负载Pd,可以将其应用扩展至各种催化反应中。在大分子N-甲基吲哚的直接C–H芳基化反应中,负载Pd的ZeoA@MesoS催化剂表现出高达98%的N-甲基-2-苯基吲哚产率,证明该梯度多级多孔结构的优势。

图文解析

图1 . 通过胶束动态组装策略合成出LTA沸石@介孔二氧化硅核壳结构纳米球(ZeoA@MesoS)的示意图。

图2 . 水热法制备出ZeoA纳米晶的(a,b)TEM图,(c)HRTEM图;通过胶束动态组装策略制备出核壳结构ZeoA@MesoS的(d)SEM图,(e,f) TEM图,(g,h) HRTEM图,其中箭头表示ZeoA纳米晶核的微孔与二氧化硅壳层的介孔之间的连接。

图3 . ZeoA纳米晶和ZeoA@MesoS的(a)X射线粉末衍射(XRD)图谱;(b)氮吸附-脱附等温线和孔径分布曲线;(c)氨程序升温脱附(NH3-TPD)曲线。

图4 . (a)磺酸功能化ZeoA@MesoS (SA-ZeoA@MesoS)催化长链羧酸(棕榈树, PA)酯化反应的示意图;(b)新制备出SA-ZeoA@MesoS催化剂的TEM图;(c)SA-ZeoA@MesoS与磺酸功能化MesoS (SA-MesoS)作为催化剂时,PA酯化反应与反应周期的关系;(d)初始反应速率对循环次数的依赖性;(e)SA-ZeoA@MesoS和SA-MesoS催化剂在PA酯化反应中的耐水性。

图5. (a)Pd-n-ZeoA@MesoS催化剂用于N-甲基吲哚C–H芳基化反应的示意图;(b)Pd-n-ZeoA@MesoS催化剂的TEM图;(c)Pd-n-ZeoA@MesoS催化剂上负载Pd的粒径分布;(d)Pd-n-ZeoA@MesoS和Pd-ZeoA@MesoS作为催化剂时,N-甲基吲哚C–H芳基化反应的产率与反应周期的关系;(e)以ZeoA, MesoS, n-ZeoA@MesoS, Pd-n-ZeoA@MesoS, Pd-ZeoA@MesoS, Pd-n-MesoS, Pd-n-MesoS/ZeoA, 商业化Pd/C, PdCl2作为催化剂时的产率比较;(f)以回收的Pd-n-ZeoA@MesoS作为催化剂时,循环运行中的产率(蓝线)和初始反应速率(红线)。

总结与展望

综上所述,本文通过胶束动态组装策略成功合成出一种具有独特梯度多级多孔结构的沸石@介孔二氧化硅核壳纳米球(ZeoA@MesoS)。这种由梯度介孔二氧化硅壳层和高度结晶LTA型沸石纳米晶(ZeoA)核(直径100 nm)组成的均匀ZeoA@MesoS纳米球,表现出优异的单分散性和高达921 m2/g的比表面积。更重要的是,核心微孔与壳层径向与梯度介孔之间相互连接的多孔结构有利于副产物水在毛细管吸引下的快速移动,并进一步被ZeoA核快速吸附,从而增强催化反应。因此,磺酸功能化ZeoA@MesoS的耐水性可以确保长链羧酸酯化反应的优异催化效率,不仅与磺酸功能化MesoS相比表现出更高的产率,而且即使在五次再生后也具有良好的稳定性。而且,所设计出的Pd固定于ZeoA@MesoS作为耐水催化纳米反应器时,表现出比商业Pd/C催化剂更卓越的N-甲基吲哚C–H芳基化反应性能,具有优异的产率(98%)、杰出的可重复使用性和较强的耐水性。得益于多功能的集成,所设计出的均匀梯度多级沸石@介孔核壳纳米球可以进一步作为任务导向型纳米反应器,包括通过调节微/介孔通道的大小和多位点进行分子尺寸筛选,以及通过适当选择核沸石的类型和壳结构进行协同催化反应。因此,该梯度多级多孔结构设计的应用不仅限于传统的化学催化剂,还可以用于包括储能和环境修复等多个领域。

文献来源

Chin-Te Hung, Linlin Duan, Tiancong Zhao, Liangliang Liu, Yuan Xia,Yupu Liu, Pengpeng Qiu, Ruicong Wang, Zaiwang Zhao, Wei Li, Dongyuan Zhao. Gradient Hierarchically Porous Structure for Rapid Capillary-Assisted Catalysis. J.Am. Chem. Soc. 2022. DOI: 10.1021/jacs.2c01444.

文献链接:https://doi.org/10.1021/jacs.2c01444


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/239471.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-11
下一篇2023-04-11

发表评论

登录后才能评论

评论列表(0条)

    保存