同共享内存一样,系统中同样需要为信号量集定制一系列专有的操作函数(semget,semctl等)。系统命令ipcs可查看当前的系统IPC的状态,在命令后使用-s参数。使用函数semget可以创建或者获得一个信号量集ID,函数原型如下:
#include <sys/shm.h>
int semget( key_t key, int nsems, int flag)
函数中参数key用来变换成一个标识符,每一个IPC对象与一个key相对应。当新建一个共享内存段时,使用参数flag的相应权限位对ipc_perm结构中的mode域赋值,对相应信号量集的shmid_ds初始化的值如表1所示。
shmid_ds结构初始化值表 ipc_perm结构数据 初 值 ipc_perm结构数据 初 值 Sem_otime 0 Sem_nsems Nsems Sem_ctime 系统当前值 参数nsems是一个大于等于0的值,用于指明该信号量集中可用资源数(在创建一个信号量时)。当打开一个已存在的信号量集时该参数值为0。函数执行成功,则返回信号量集的标识符(一个大于等于0的整数),失败,则返回–1。函数semop用以操作一个信号量集,函数原型如下:
#include <sys/sem.h>
int semop( int semid, struct sembuf semoparray[], size_t nops )
函数中参数semid是一个通过semget函数返回的一个信号量标识符,参数nops标明了参数semoparray所指向数组中的元素个数。参数semoparray是一个struct sembuf结构类型的数组指针,结构sembuf来说明所要执行的操作,其定义如下:
struct sembuf{
unsigned short sem_num
short sem_op
short sem_flg
}
在sembuf结构中,sem_num是相对应的信号量集中的某一个资源,所以其值是一个从0到相应的信号量集的资源总数(ipc_perm.sem_nsems)之间的整数。sem_op指明所要执行的操作,sem_flg说明函数semop的行为。sem_op的值是一个整数,如表2所示,列出了详细sem_op的值及所对应的操作。
sem_op值详解 Sem_op 操 作 正数 释放相应的资源数,将sem_op的值加到信号量的值上 0 进程阻塞直到信号量的相应值为0,当信号量已经为0,函数立即返回。如果信号量的值不为0,则依据sem_flg的IPC_NOWAIT位决定函数动作。sem_flg指定IPC_NOWAIT,则semop函数出错返回EAGAIN。sem_flg没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生。信号量值为0,将信号量的semzcnt的值减1,函数semop成功返回;此信号量被删除(只有超级用户或创建用户进程拥有此权限),函数smeop出错返回EIDRM;进程捕捉到信号,并从信号处理函数返回,在此情况将此信号量的semncnt值减1,函数semop出错返回EINTR 负数 请求sem_op的绝对值的资源。如果相应的资源数可以满足请求,则将该信号量的值减去sem_op的绝对值,函数成功返回。当相应的资源数不能满足请求时,这个操作与sem_flg有关。sem_flg指定IPC_NOWAIT,则semop函数出错返回EAGAIN。sem_flg没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:当相应的资源数可以满足请求,该信号的值减去sem_op的绝对值。成功返回;此信号量被删除(只有超级用户或创建用户进程拥有此权限),函数smeop出错返回EIDRM:进程捕捉到信号,并从信号处理函数返回,在此情况将此信号量的semncnt值减1,函数semop出错返回EINTR
第一章:绪论?内核版本号格式:x.y.zz-www/x为主版本号,y为次版本号,zz为次次版本号,www为发行号/次版本号改变说明内核有重大变革,其偶数为稳定版本,奇数为尚在开发中的版本
第二章:基础?
文件种类:-:txt,二进制/d:目录/l:链接文件(link)/b:区块设备文件/c:字符设备文件/p:管道
目录结构:bin:可执行/boot:开机引导/dev:设备文件/etc:系统配置文件/lib:库文件/mnt:设备挂载点/var:系统日志/
命令:rmdir:删除空目录/find [path] [expression]/touch命令还可以修改指定文件的最近一次访问时间/tar -czvf usr.tar.gz path/tar –zxvf usr.tar.gz/tar –cjvf usr.tar.bz2 path/tar –jxvf usr.tar.bz2
gcc:预处理:-g/I在头文件搜索路径中添加目录,L在库文件搜索路径中
gdb:设置断点:b/查看断点信息:info
Makefile:make –f other_makefile/<:第一个依赖文件的名称/@:目标文件的完整名称/^:所有不重复的依赖文件/+:所有依赖文件(可能重复)
第三章:文件IO
read:read(fd, temp, size)/读fd中长度为size的值到temp/返回0表示file为NULL
write:write(fd, buf, buf_size)/写长度为buf_size的buf内容到fd中
lseek:lseek(fd, offset, SEEK_SET)/从文件开头向后增加offset个位移量
unlink:从文件系统中删除一个名字
open1:int open(const char * pathname, int flags, mode_t mode)/flags为读写方式/mode为权限设置/O_EXCL:测试文件是否存在/O_TRUNC:若存在同名文件则删除之并新建
open2:注意O_NONBLOCK
mmap.1:void *mmap(void *start, size_t length, int prot, int flags, int fd, off_t offsize)
mmap.2:mmap(start_addr, flength, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0)
fcntl:上锁/int fcntl(int fd, int cmd, struct flock * lock)/对谁;做什么;设置所做内容
select:fd_max+1,回传读状况,回传写状况,回传异常,select等待的时间/NULL为永远等待/0为从不等待/凡需某状况则用之,反则(fd_set *)NULL之
FD_*那几个函数……
一般出错则返回-1
第四章:文件与目录
硬链接与符号链接?
chdir改变目录
0:in/1:out/2:err
第五章:内存管理
可执行文件存储时:代码区、数据区和未初始化区
栈:by编译器,向低址扩展,连续,效率高/堆:by程序员
/etc/syslog.conf,系统log记录文件/优先级为-20时最高
第六章:进程和信号
程序代码、数据、变量、文件描述符和环境/init的pid为1
execl族:int execl(const char * path, const char * arg, ....)/path即可执行文件的路径,一般为./最后一个参数以NULL结束
waitpid:waitpid(pid_t pid,int * status,int options)/option:一般用WNOHANG,没有已经结束的子进程则马上返回,不等待
kill:int kill(pid_t pid,int sig)/发送信号sig给pid
void (*signal(int signum, void(* handler)(int)))(int)/第一个参数被满足时,执行handler/第一个参数常用:SIG_IGN:忽略信号/SIG_DFL:恢复默认信号
第七章:线程
sem_init(sem_t *sem, int pshared, unsigned int value)/pshared为0/value即初始值
第八章:管道
1:write/0:read
第九章:信号量、共享内存和消息队列
临界资源:操作系统中只允许一个进程访问的资源/临界区:访问临界资源的那段代码
信号量:建立联系(semget),然后初始化,PV操作,最后destroy
共享内存没有提供同步机制
第十章:套接字
UDP:无连接协议,无主客端的区分/实时性
TCP:字节流/数据可靠性/网络可靠性
数据报:SOCK_STREAM/SOCK_DGRAM
其它
管道一章的both_pipe即父子进程间的全双工管道通讯
关系到信号和互斥的服务器-客户端程序
线程一章的class的multi_thread文件夹下的thread8.c
int main(void)
{
int data_processed
int file_pipes_1[2]
int file_pipes_2[2]
char buffer[BUFSIZ + 1]
const char some_data[] = "123"
const char ch2p[] = "this is the string from child to the parent!"
const char p2ch[] = "this is the string from parent to the child!"
pid_t fork_result
memset(buffer,'\0',sizeof(buffer))
if(pipe(file_pipes_1) == 0){
if(pipe(file_pipes_2) == 0){
fork_result = fork()
switch(fork_result){
case -1:
perror("fork error")
exit(EXIT_FAILURE)
case 0://child
close(file_pipes_1[1])
close(file_pipes_2[0])
printf("in the child!\n")
read(file_pipes_1[0],buffer, BUFSIZ)
printf("in the child, read_result is \"%s\"\n",buffer)
write(file_pipes_2[1],ch2p, sizeof(ch2p))
printf("in the child, write_result is \"%s\"\n",ch2p)
exit(EXIT_SUCCESS)
default://parent
close(file_pipes_1[0])
close(file_pipes_2[1])
printf("in the parent!\n")
write(file_pipes_1[1], p2ch, sizeof(p2ch))
printf("in the parent, write_result is \"%s\"\n",p2ch)
read(file_pipes_2[0],buffer, BUFSIZ)
printf("in the parent, read_result is \"%s\"\n",buffer)
exit(EXIT_SUCCESS)
}
}
}
}
#ifndef DBG
#define DBG
#endif
#undef DBG
#ifdef DBG
#define PRINTF(fmt, args...) printf("file->%s line->%d: " \
fmt, __FILE__, __LINE__, ##args)
#else
#define PRINTF(fmt, args...) do{}while(0)
#endif
int main(void)
{
PRINTF("%s\n", "hello!")
fprintf(stdout, "hello hust!\n")
return 0
}
#define N 5
#define MAX 5
int nput = 0
char buf[MAX][50]
char *buffer = "abcdefghijklmnopqrstuvwxyz0123456789"
char buf_r[100]
sem_t mutex,full,avail
void *productor(void *arg)
void *consumer(void *arg)
int i = 0
int main(int argc, char **argv)
{
int cnt = -1
int ret
int nput = 0
pthread_t id_produce[10]
pthread_t id_consume
ret = sem_init(&mutex, 0, 1)
ret = sem_init(&avail, 0, N)
ret = sem_init(&full, 0, 0)
for(cnt = 0cnt <6cnt ++ ){
//pthread_create(&id_produce[cnt], NULL, (void *)productor, &cnt)
pthread_create(&id_produce[cnt], NULL, (void *)productor, (void *)cnt)
}
pthread_create(&id_consume, NULL, (void *)consumer, NULL)
for(cnt = 0cnt <6cnt ++){
pthread_join(id_produce[cnt], NULL)
}
pthread_join(id_consume,NULL)
sem_destroy(&mutex)
sem_destroy(&avail)
sem_destroy(&full)
exit(EXIT_SUCCESS)
}
void *productor(void *arg)
{
while(1){
sem_wait(&avail)
sem_wait(&mutex)
if(nput >= MAX * 3){
sem_post(&avail)
//sem_post(&full)
sem_post(&mutex)
return NULL
}
sscanf(buffer + nput, "%s", buf[nput % MAX])
//printf("write[%d] \"%s\" to the buffer[%d]\n", (*(int*)arg), buf[nput % MAX],nput % MAX)
printf("write[%d] \"%s\" to the buffer[%d]\n", (int)arg, buf[nput % MAX],nput % MAX)
nput ++
printf("nput = %d\n", nput)
sem_post(&mutex)
sem_post(&full)
}
return NULL
}
void *consumer(void *arg)
{
int nolock = 0
int ret, nread, i
for(i = 0 i <MAX * 3i++)
{
sem_wait(&full)
sem_wait(&mutex)
memset(buf_r, 0, sizeof(buf_r))
strncpy(buf_r, buf[i % MAX], sizeof(buf[i % MAX]))
printf("read \"%s\" from the buffer[%d]\n\n",buf_r, i % MAX)
sem_post(&mutex)
sem_post(&avail)
//sleep(1)
}
return NULL
}
sem_init:初始化信号量sem_t,初始化的时候可以指定信号量的初始值,以及是否可以在多进程间共享。sem_wait:一直阻塞等待直到信号量>0。
sem_timedwait:阻塞等待若干时间直到信号量>0。
sem_post:使信号量加1。
sem_destroy:释放信号量。和sem_init对应。 答案补充 关于各函数的具体参数请用man查看,如man sem_init可查看该函数的帮助
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)