苏州大学:改进界面接触,实现17%高效钙钛矿发光二极管

苏州大学:改进界面接触,实现17%高效钙钛矿发光二极管,第1张

电荷注入不平衡是制约钙钛矿型发光二极管(PeLEDs)效率的主要问题之一。通过对多空穴传输层的器件结构进行了设计,成功地实现了高效的PeLEDs器件。然而,在一个典型的溶液法制备的PeLEDs中,多层HTL很容易被下一层的油墨重新溶解,这不仅严重恶化了HTLs的电性能,而且影响了顶层钙钛矿薄膜的质量。

来自苏州大学的研究人员针对这一现象, 通过在HTLs和钙钛矿层之间插入一层薄的原子层沉积氧化铝(Al2O3)层,成功的改善了界面接触,从而获得具有增强特性和平衡电荷注入的钙钛矿薄膜。 另外,由于适当的折射率(r),Al2O3层的存在也有利于PeLEDs的出光耦合。结果表明,所制备的绿色PeLEDs具有良好的重复性和17.0%的外量子效率,比不添加Al2O3的器件提高约60%。该工作为提高钙钛矿型光电器件中电荷传输层与钙钛矿之间的界面接触提供了一条很有前途的途径。相关论文以题目为“High Efficiency Perovskite Light-Emitting Diodes with Improved Interfacial Contact”发表在ACS Applied Materials &Interfaces 期刊上。

论文链接:

https://pubs.acs.org/doi/10.1021/acsami.0c07514

金属卤化物钙钛矿由于其独特的光电特性,是一种很有前途的发光二极管材料。在过去的几年里在器件方面取得了重大进展。在典型的PeLEDs中,器件通常由电极、电子传输层(ETL)、发射层(EML)和空穴传输层(HTL)组成。良好的能量水平校准是提高电荷注入效率的关键。切相关,因此迫切需要开发有效的方法来增强电荷传输层与EML之间的界面接触。在这种情况下,需要在钙钛矿薄膜和电荷传输层之间形成一个更可控、质量更高的界面层。在这里,作者开发了一种通过在中间插入原子层沉积处理过的氧化铝层来提高界面质量的方法。得到了很大改善的界面接触,同时也增强了钙钛矿前驱体在其上的润湿性,从而促进了高质量钙钛矿薄膜的形成。

图1.(a)底层再溶解示意图。(b)ITO / TFB / PVK的AFM高度和线扫描。 AFM图像的扫描区域为5μm×5μm。(c)ITO / TFB / PVK / Al2O3的AFM高度和线扫描(n = 50)。 AFM图像的扫描区域为5μm×5μm。

图2.(a)用不同循环Al2O3层覆盖的TFB / PVK的水接触角。(b)TFB / PVK / Al2O3(n = 0、30、50和70)上钙钛矿薄膜的SEM图像和(c)AFM图像。SEM图像的比例尺为200 nm。AFM图像的扫描区域为10μm×10μm。

图3.(a)沉积在TFB / PVK / Al2O3上的钙钛矿薄膜的PL强度(n = 0、30、50和70)。(b)沉积在TFB / PVK / Al2O3上的钙钛矿膜的PL强度与时间的关系(n = 0、30、50和70)。(c)具有不同循环Al2O3层的器件在514 nm波长处的模拟光通量。

图4.(a)具有ITO / TFB / PVK / Al2O3/钙钛矿/ TPBi /LiF / Al结构(n = 50)的器件的截面SEM图像。(b)PeLED器件结构的能量图。(c)具有n = 0、30、50和70的器件的J-V-L曲线。(d)具有或不具有Al2O3(n = 50)层的器件的EQE-J曲线。(e)n = 0、30、50和70的器件的EQE分布。(f)不使用(W / O)或使用Al2O3(n = 50)的器件的工作时间,其亮度衰减。

(文:爱新觉罗星)

成果简介

具有高比表面积的多孔碳纳米片已经成为超级电容器最有希望的电极材料,但是它们的高孔体积导致相对较低的密度和较差的体积电容。 本文,苏州大学Chong Chen等研究人员 在《Carbon》期刊发表名为“Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances”的论文, 研究通过新型的D-葡萄糖酸钙爆炸技术成功地按比例合成了支撑氮掺杂的分层多孔碳纳米片(SNPCNS),该碳纳米管具有通过支撑支撑的三维非聚集结构。

调节热解温度和时间,以及D-葡萄糖酸钙和脲甲醛树脂的质量比,以优化SNPCNS的比表面积,孔体积和电容性能。经过优化的SNPCNS具有高比表面积(539 m2g -1),表面杂原子丰富(N为8.1 at。%)和高密度(1.11 g cm -3)。因此,由SNPCNS电极组装的超级电容器具有非常高的重量/体积电容,分别为286Fg-1/317Fcm-3(在6MKOH中)和355Fg-1 / 394Fcm-3(在1 MH 2中)所以4)。重要的是,实现了重离子/体积能量密度(在离子液体中)为40.5 W h kg -1 /44.9 W h L -1(在离子液体中),优于先前报道的基于碳纳米片的对称超级电容器。这项工作为大规模和低成本生产用于能量存储的高性能多孔碳纳米片提供了新的策略。

图文导读

图1。氮掺杂分层多孔碳纳米片的合成示意图。

图2。SNPCNS-1:1-800-2h的(ab)SEM图像,(ce)TEM图像,(f)AFM图像和(gi)EDX元素映射图像。

图3。(a)XPS调查,(b)SNPCNS-1:1-800-2h的C1s,(c)N1s和(d)O1s光谱。

图4。SNPCNS材料通过热膨胀和热解转化制备过程的示意图。

图5。(a)20 mV s -1时的CV曲线,(b)1 A g -1时的GCD曲线,以及(c)SNPCNS样品在6 M KOH溶液中的体积电容。(d)在6 M KOH溶液中SNPCNS-1:1-800-2h的GCD曲线。(e)SNPCNS-1:1-800-2h在1 MH 2 SO 4和6 M KOH溶液中的奈奎斯特图。(f)SNPCNS-1:1-800-2h电极的重量/体积电容与其他报道的碳电极的比较。

图6。SNPCNS-1:1-800-2h在6 M KOH和[EMIm] NTf 2电解质中的电化学性能。

小结

总之,开发了一种D-葡萄糖酸钙爆炸技术,可以轻松而可规模地合成一种支链的氮掺杂分层多孔碳材料。 SNPCNS的高产量生产和出色的电容性能使其能够在超级电容器中进行大规模应用。

文献:

https://doi.org/10.1016/j.carbon.2021.04.062

二维材料具有许多突出的特性,使它们对电子器件的制造具有吸引力,如高导电性、灵活性和透明度。然而,在商业器件和电路中集成二维材料是具有挑战性的,因为它们的结构和性能在制造过程中可能会被破坏。最近的研究表明,标准的金属沉积技术(如电子束蒸发和溅射)会显著破坏二维材料的原子结构。这里表明,通过喷墨打印技术沉积金属不仅不会对超薄二维材料的原子结构产生任何可观察到的破坏,而且可以保持尖锐的界面。这些结论得到了原子模拟、透射电子显微镜、纳米化学计量学和探针台的器件表征获得的大量数据的支持。这些结果对于理解应用于二维材料的喷墨打印技术非常重要,它们可以促进更好的设计和优化电子器件和电路。

使用二维材料来构建集成电路将代表着微纳米电子领域的一场革命。然而,金属在二维材料上的沉积和溅射--这是构建电路的一个必要过程--会损害其表面,导致性能和可靠性下降。本文将为大家介绍最新发表 在Advanced Materials 主刊上题为“ Defect-Free Metal Deposition on 2D Materials via Inkjet Printing Technology ”的文章。这项工作发现,通过喷墨打印技术在二维材料上沉积金属不会产生任何缺陷,我们可以观察到完美的层状结构和清晰的界面。在器件层面,喷墨打印的器件展现出稳定的性能,这在用其他金属沉积方法制备的器件中观察不到。

这项工作详尽地分析了三种不同的金属沉积技术(电子束蒸发、溅射和喷墨打印)在机械剥离和化学气相沉积制备的 18层厚( 6纳米)氮化硼(h-BN)堆叠的形态中引入的损伤。我们选择这种材料是因为引入的损伤可能比其他任何二维层状材料有更大的影响,因为h-BN被用作电介质来阻止/调节平面外的电流,在这个方向上,原子缺陷会成倍地增加泄漏电流--也就是说,h-BN中的平面外电流将比石墨烯、MXenes和二维半导体的平面内电流更受局部缺陷影响。本文使用这个厚度是因为它与有史以来报道的一些最杰出的基于h-BN的器件所使用的厚度一致。本文的研究表明电子束沉积和溅射都会在h-BN中引入大量缺陷,尤其是化学合成的h-BN。然而,喷墨打印技术并没有在h-BN的原子结构中产生任何可观察到的损伤,通过大量的透射电子显微图像肯定了喷墨打印技术在h-BN上沉积金属不会产生任何缺陷。

图1. a,b,c) 制备过程. d1) 旋涂光刻胶保护h-BN. d2) 用机械剥离的Au电极保护h-BN. d3) 用Ag ink保护h-BN.e) 在三个样品上镀一层17 nm的Au. f,g) 三个样品的光学图像. h,i,j) 三个样品的SEM图像

本文通过机械剥离法剥离出 6nm厚、 30μm长的h-BN薄片,并将其转移在有标记的300nmSiO2/Si上(见图1a-c),以便在随后的分析中通过扫描找到位置。接着,使用三种不同的方法将h-BN薄膜的一部分保护起来:i)通过光刻一个10μm 10μm的正方形负光刻胶(图1d1),ii)通过转移Au电极(图1d2),和iii)通过喷墨打印沉积Ag墨水(图1d3)。然后, 17纳米厚的金膜通过电子束蒸发(0.52Å s-1和11%的功率)沉积在样品各处。请注意,这些参数与其他研究中经常使用的参数相似,并被认为是在材料中引入低损伤的参数。

图2. 三种保护方法和未被保护区域的TEM图对比

图2展示了每个样品的代表性截面透射电子显微镜(TEM)图像,第一行是受保护的区域,中间一行是未受保护的区域。可以看出,对于机械剥离的h-BN薄膜,受保护的h-BN区域显示出几乎完美的的层状结构,层层堆叠,层间距为0.3nm,并且顶部和底部的界面都是非常清晰和干净的。这也证明了FIB切割是使用最佳参数完成的,并且它们不会影响我们样品的形态—之前有过对不同材料的研究表明,如果选择的FIB参数不对,晶体材料会变形,本文的研究中没有这种情况。相反,h-BN的未受保护的区域显示出多个原子缺陷,特别是在顶部界面,证明了在电子束蒸发过程对h-BN堆积物的形态的不利影响。一个令人惊讶的发现是,在h-BN和SiO2衬底之间的界面也显示出在未受保护的区域有更多的缺陷,即使上面的h-BN堆栈的原始分层结构没有被破坏。如果是颗粒的穿透而导致的材料损坏,那么上层的界面也应该被破坏。这一观察也表明:i) 6纳米厚的h-BN不足以阻止蒸发的金原子穿过h-BN,以及ii)h-BN与相邻材料的界面比晶体内部结构更容易变得无序。

图3. 化学分析法对比保护和未保护区域元素分布

用光刻胶保护的样品(图3b,c)在C层(光刻胶)下方显示出非常强且均匀的N信号(来自h-BN)相反,同一样本的未保护区域(图3e,f)显示h-BN区域的N信号较弱、不连续、不均匀,表明h-BN层损伤明显。受保护样品的横截面EELS剖面(图3g)显示出接近理想的化学成分,B和N信号重叠且对称,且没有任何其他材料。相反,未受保护的区域较窄,而且O信号向h-BN堆积方向迁移(见图3h),与TEM图像(见图2d)中观察到的SiO2/h-BN(底部)界面的损伤一致。这一观察结果表明,穿透样品的Au原子向h-BN附近的O原子释放能量,促进了它们的迁移。在 其他两个样品中也观察到类似现象。

图4. 金原子进入氮化硼所需能量的计算模拟

Fernan博士基于第一原理计算模拟了Au原子进入h-BN薄膜的所需要的能量。图4a,b从两个维度展示了Au原子进入剥离的h-BN薄膜且处于不同位置的图像。对应的图4c,d为金原子沉积到取代B原子、取代N原子、占据B空位和占据N空位这一过程所需的能量。而图e,f则对应了Au原子进入无定形的h-BN薄膜所需要的能量。所有这些计算表明,在h-BN堆叠完美的二维层状结晶结构中引入Au原子是很困难的,因为需要的能量>14 eV,而且原生缺陷和悬空键(即特别是剥落样品中的界面和MOCVD样品中几个原子宽的区域)正在促进原子缺陷的聚集。由于从Au晶体中分离一个Au原子所需的最小能量(也称为内聚能)是每个原子3.81eV(368kJ mol-1),即使达到了启动蒸发所需的最小能量,如果存在固有缺陷,h-BN中在蒸发过程中仍会形成缺陷。换句话说,如果h-BN薄膜含有原生缺陷,那么在蒸发过程中形成更多的缺陷是不可避免的,与蒸发参数无关。图4a还表明,在金原子穿过一个h-BN层后,B和N原子的六边形晶格被恢复。这与观察到的以下情况是一致的,良好的内部结构加上一个受损的底部界面(见图2d-f)。

图5. 电子束沉积器件和喷墨打印器件性能比较

最后,本文研究了Ag/h-BN/Au器件作为TRNG电路的熵源的可能性。为了做到这一点,我们将带有蒸发和喷墨打印的顶部电极的器件暴露在恒压应力下,并记录随机电报噪声(RTN)的电流信号RTN。RTN是金属/绝缘体/金属结构的一个标志性的价值指标,它由观察两种电流状态之间的随机跃迁(由于介电介质中的随机电荷捕获和去捕获)组成,这使得它们能够在TRNG电路中用作熵源(如果它在一段时间内足够稳定)。我们的实验表明,使用喷墨打印的顶部Ag电极的器件容易表现出RTN,并且它在很长一段时间内是稳定的。图5g显示了部分测量的RTN特性。正如可以观察到的,这两个当前水平可以清楚地区分,这一点在加权时间滞后图5 h中更明显。因此,采用顶部Ag电极的Ag/h-BN/Au器件不仅具有更小的泄漏和击穿电流(见图5c-f),还存在额外的电子现象(即RTN),使其能够在其他应用中使用(即TRNG电路中的熵源)。

苏州大学功能纳米与软物质研究院硕士生郑雯雯为本文第一作者,阿卜杜拉国王 科技 大学的Mario Lanza教授为本文的通讯作者,阿卜杜拉国王 科技 大学的博士后Fernan Saiz为本工作提供了计算模拟支持。其他合作者包括苏州大学研究生沈雅清、刘颖文,巴塞罗那大学博士生朱凯晨,以及英国Aixtron公司的Clifford McAleese博士、Xiaochen Wang博士和Ben Conran先生。上述研究工作得到 科技 部、国家自然科学基金、财政部、国家外国专家局、苏州市 科技 局、苏州大学、苏州纳米 科技 协同创新中心、江苏省碳基功能材料与器件重点实验室、江苏省重点学科发展计划、器件重点实验室,以及江苏省高等学校重点学科建设计划、高等教育机构的优先发展项目以及阿卜杜拉国王 科技 大学等平台的支持。

论文链接:

https://onlinelibrary.wiley.com/doi/10.1002/adma.202104138


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/244926.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-12
下一篇2023-04-12

发表评论

登录后才能评论

评论列表(0条)

    保存