sem什么意思

sem什么意思,第1张

sem的意思是:

1、abbr. 扫描式电子显微镜(scanning electron microscope);标准电子组件(Standard Electronic Modules)

2、n. (Sem)(泰、柬)森(人名);(Sem)(西、挪)塞姆(人名)

【读音】英 [,es i: 'em]

【短语】

1、SEM Analysis 扫描电镜分析 扫描电子显微镜分析 sem分析

2、sem image sem图像 sem图

3、sem break 空白时间

4、sem valor 无用

5、SEM WATCH 搜索引擎营销观察

6、TSINGHUA SEM 理学院 清华经管学院 清华大学经济管理学院 大学经济管理学院

扩展资料

sem的近义词

seminar

【读音】英 [ˈsemɪnɑː(r)]  美 [ˈsemɪnɑːr]

【意思】n. 讨论会,研讨班

【短语】

1、seminar course 研究学程 专题研究科目 研究科目

2、Olympic Seminar 奥运主题讲座

3、Advanced seminar 高级研讨会

4、Basic Seminar 突破性领导力基础课程 基本课程 真善美讲座

5、Business Seminar 商务研讨会

6、Joint Seminar 双边学术研讨会

比重分析法

指通过计算某个维度所占维度总量的比例,从而去判断投放方向或投放效果。

公式:比重=某维度数值 / 总量 X 100%

倒推法

倒推法,是竞价推广中常用的一种方法,但更多被应用于战略目标的制定。

即:根据历史数据,将成交—线索—对话—点击—展现倒着进行推理的过程。

关键词四象限分析

关键词是竞价推广之根本,那么便可通过对关键词进行系统化分类,从而有针对性地进行优化。

通常,主要分为以下四类:

01 有对话成本低

像这类词,大都集中在品牌词等,且它属于优质词的一类,针对较为优秀的词可以进行放量操作

例如:加词、提价、放匹配等等。

02 有对话成本高

像这类词,主要集中在产品词和行业大词。

点击成本高,往往说明点击流量多且杂,这类情况建议有条件地放量操作,即:获取流量的同时,去控制流量的质量。

主要操作有:

加词、

优化账户结构(使账户流量结构更精准)

优化创意(利用创意筛选部分杂质流量)

03 无对话成本高

这种情况,往往都是没有集中词性,通常可根据以下两点来进行判断下一步的操作:

均价高还是低?

流量大还是小?

若流量很大,均价很低,往往通过优化页面来进行若均价很高,流量一般,便是进行降价操作若是因为流量意向低,建议进行收匹配操作。

04 效果差成本低

像这种情况,大多数都为“只点击一次就产生了对话”,我们就以为是优质词,便进行放量操作,但也有可能是意外。

营销流程表分析

通过每天罗列、收集账户中核心指标数据【消费、展现、点击、抵达、对话、线索、成交】,然后根据核心数据算出一些辅助数据,像【点击率、对话率、点击成本】等,通过将不同周期的数据进行对比,从而发现病种。

单一维度分析

指针对不同维度间的数据进行分析,从而确定优化方向。

单一维度主要可分为:产品维度、时段维度、设备维度、地区维度、关键词维度。

R的功能很强大,各种包很多。但就是因为包太多,造成了很大的麻烦。不可避免的,可以做结构方程模型的包也不少,例如:sem、psych、OpenMx,lavaan等。我选择了lavaan包。原因:语法简介易懂,上手快,支持非正态、连续数据,可以处理缺失值。

lavaan包是由比利时根特大学的Yves Rosseel开发的。lavaan的命名来自于 latent variable analysis,由每个单词的前两个字母组成,la-va-an——lavaan。

为什么说它简单呢? 主要是因为它的lavaan model syntax,如果你会R的回归分析,那它对你来说再简单不过了。

一、语法简介

语法一:f3~f1+f2(路径模型)

结构方程模型的路径部分可以看作是一个回归方程。而在R中,回归方程可以表示为y~ax1+bx2+c,“~”的左边的因变量,右边是自变量,“+”把多个自变量组合在一起。那么把y看作是内生潜变量,把x看作是外生潜变量,略去截距,就构成了lavaan model syntax的语法一。

语法二:f1 =~ item1 + item2 + item3(测量模型)

"=~"的左边是潜变量,右边是观测变量,整句理解为潜变量f1由观测变量item1、item2和item3表现。

语法三:item1 ~~ item1 , item1 ~~ item2

"~~"的两边相同,表示该变量的方差,不同的话表示两者的协方差

语法四:f1 ~ 1

表示截距

此外还有其它高阶的语法,详见lavaan的help文档,一般的结构方程建模分析用不到,就不再列出。

二、模型的三种表示方法

以验证性因子分析举例说明,对于如下图所示的模型:

方法一:最简化描述

只需指定最基本的要素即可,其他的由函数自动实现,对模型的控制力度最弱。只使用于函数cfa()和sem()

model<-'visual=~x1+x2+x3 textual=~x4+x5+x6 speed=~x7+x8+x9' fit <- cfa(model, data = HolzingerSwineford1939)

需要注意的是,这种指定模型的方式在进行拟合时,会默认指定潜变量的第一个测量变量的因子载荷为1,如果要指定潜变量的方差为1,可以:

model.bis <- 'visual =~ NA*x1 + x2 + x3 textual =~ NA*x4 + x5 + x6 speed =~ NA*x7 + x8 + x9 visual ~~ 1*visual textual ~~ 1*textual speed ~~ 1*speed'

方法二:完全描述

需要指定所有的要素,对模型控制力最强,适用于lavaan()函数,适合高阶使用者

model.full<- ' visual =~ 1*x1 + x2 +x3 textual =~ 1*x4 + x5 + x6 speed =~ 1*x7 + x8 +x9 x1 ~~ x1 x2 ~~ x2 x3 ~~ x3 x4 ~~ x4 x5 ~~ x5 x6 ~~ x6 x7 ~~ x7 x8 ~~ x8 x9 ~~ x9 visual ~~ visual textual ~~ textual speed ~~ speed visual ~~ textual +speed textual ~~ speed' fit <- lavaan(model.full, data = HolzingerSwineford1939)

方法三:不完全描述

最简化和完全描述的混合版,在拟合时增加 auto.* 参数,适用于lavaan()函数

model.mixed<- '# latent variables visual =~ 1*x1 + x2 +x3 textual =~ 1*x4 + x5 + x6 speed =~ 1*x7 + x8 +x9 # factor covariances visual ~~ textual + speed textual ~~ speed' fit <- lavaan(model.mixed, data = HolzingerSwineford1939, auto.var = TRUE)

可以设定的参数详见help帮助文档

PS:可以在lavaan()函数里设置参数mimic="Mplus"获得与Mplus在数值和外观上相似的结果,设置mimic="EQS",输出与EQS在数值上相似的结果

三、拟合结果的查看

查看拟合结果的最简单方法是用summary()函数,例如

summary(fit, fit.measures=TRUE)

但summary()只适合展示结果,parameterEstimates()会返回一个数据框,方便进一步的处理

parameterEstimates(fit,ci=FALSE,standardized = TRUE)

获得大于10的修正指数

MI<- modificationindices(fit) subset(MI,mi>10)

此外,还有其他的展示拟合结果的函数,功能还是蛮强大的

四、结构方程模型

(1)设定模型

model<- ' # measurement model ind60 =~ x1 + x2 +x3 dem60 =~ y1 + y2 + y3 + y4 dem65 =~ y5 + y6 + y7 + y8 # regressions dem60 ~ ind60 dem65 ~ ind60 + dem60 # redisual covariances y1 ~~ y5 y2 ~~ y4 +y6 y3 ~~ y7 y4 ~~ y8 y6 ~~ y8'

(2)模型拟合

fit <- sem(model, data = PoliticalDemocracy) summary(fit, standardized = TRUE)

(3)给回归系数设置标签

给回归系数设定标签在做有约束条件的结构方程模型时会很有用。当两个参数具有相同的标签时,会被视为同一个,只计算一次。

model.equal <- '# measurement model ind60 =~ x1 + x2 + x3 + dem60 =~ y1 + d1*y2 + d2*y3 + d3*y4 dem65 =~ y5 + d1*y6 + d2*y7 + d3*y8 # regressions dem60 ~ ind60 dem65 ~ ind60 + dem60 # residual covariances y1 ~~ y5 y2 ~~ y4 + y6 y3 ~~ y7 y4 ~~ y8 y6 ~~ y8'

(4)多组比较

anova(fit, fit.equal)

anova()会计算出卡方差异检验

(5)拟合系数

lavaan包可以高度定制化的计算出你想要的拟合指标值,例如,我想计算出卡方、自由度、p值、CFI、NFI、IFI、RMSEA、EVCI的值

fitMeasures(fit,c("chisq","df","pvalue","cfi","nfi","ifi","rmsea","EVCI"))

(6)多组结构方程

在拟合函数里面设置 group参数即可实现,同样的可以设置group.equal参数引入等式限制

五、作图

Amos以作图化操作见长,目前版本的Mplus也可以实现作图,那R语言呢,自然也是可以的,只不过是另一个包——semPlot,其中的semPaths()函数。

简单介绍一下semPaths()中的主要函数

semPaths(object, what = "paths", whatLabels, layout = "tree", ……)

(1)object:是拟合的对象,就是上文中的“fit”

(2)what:设定图中线的属性, 默认为paths,图中所有的线都为灰色,不显示参数估计值;

semPaths(fit)

若what设定为est、par,则展示估计值,并将线的颜色、粗细、透明度根据参数估计值的大小和显著性做出改变

semPaths(fit,what = "est")

若设置为stand、std,则展示标准参数估计

semPaths(fit,what = "stand")

若设置为eq、cons,则与默认path相同,如果有限制等式,被限制的相同参数会打上相同的颜色;

(3)whatLabels:设定图中线的标签

name、label、path、diagram:将边名作为展示的标签

est、par:参数估计值作为边的标签

stand、std:标准参数估计值作为边的标签

eq、cons:参数号作为标签,0表示固定参数,被限制相同的参数编号相同

no、omit、hide、invisible:隐藏标签

(4)layout:布局

主要有树状和环状两种布局,每种布局又分别有两种风格。

默认为“tree”,树状的第二种风格如下图,比第一种看起来舒服都了

semPaths(fit,layout = "tree2")

第一种环状

semPaths(fit,layout = "circle")

额,都揉成一团了!

试试第二种风格

semPaths(fit,layout = "circle2")

还好一点。如果把Rstudio默认的图片尺寸设计好,作图效果会更棒。

还有一种叫spring的布局,春OR泉?

semPaths(fit,layout = "spring")

看起来跟环状的很像。

详细内容可以阅读以下文献,以及相应的help文档:

[1]Rosseel Y. lavaan: An R package for structural equation modeling[J]. Journal of Statistical Software, 2012, 48(2): 1-36.


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/245788.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-13
下一篇2023-04-13

发表评论

登录后才能评论

评论列表(0条)

    保存