sem_wait的描述

sem_wait的描述,第1张

sem_wait() 减小(锁定)由sem指定的信号量的值.如果信号量的值比0大,那么进行减一的操作,函数立即返回.如果信号量当前为0值,那么调用就会一直阻塞直到或者是信号量变得可以进行减一的操作(例如,信号量的值比0大),或者是信号处理程序中断调用

sem_trywait() 和 sem_wait()是一样的,除了如果不能够对信号量立即进行减一,那么sem_trywait()就会返回一个错误(错误号是AGAIN)而不是锁定.sem_timedwait() 和 sem_wait()是一样的,除了如果减一操作不能立即执行的话,abs_timeout 指定了调用应该被阻塞的时间限制.abs_timeout 参数指向了一个结构体指定了由秒和纳秒组成的绝对的超时值:从1970-01-01 00:00:00 +0000纪元开始的UTC,结构体的定义如下:struct timespec {time_t tv_sec/* Seconds */long tv_nsec/* Nanoseconds [0 .. 999999999] */}如果超时值已经超过了调用规定的值,那么信号量不能被立即锁定,之后sem_timedwait() 为超时失败(error设置为ETIMEDOUT).

如果操作立即生效,那么sem_timedwait() 永远不会返回超时的错误,不管abs_timeout的值.更进一步的是,在这种情况下abs_timeout值的有效性都不会检查. EINTR The call was interrupted by a signal handlersee signal(7).//调用被信号处理中断

EINVAL sem is not a valid semaphore.//sem不是有效的信号量

The following additional error can occur for sem_trywait()://下面的错误是sem_trywait()可能发生的:

EAGAIN The operation could not be performed without blocking (i.e., thesemaphore currently has the value zero).//除了锁定无法进行别的操作(如信号量当前是0值).

The following additional errors can occur for sem_timedwait()://下面的错误是sem_timedwait()可能发生的:

EINVAL The value of abs_timeout.tv_nsecs is less than 0, or greater than orequal to 1000 million.//abs_timeout.tv_nsecs 的值比0小或者大于等于1000毫秒(译者注:纳秒的值不能比0小,不能比1秒大)

ETIMEDOUTThe call timed out before the semaphore could be locked.//在信号量锁定之前就超时了 对这些函数,信号处理程序总是会中断阻塞,不管是否使用了sigaction(2)的SA_RESTART标志位.

朋友你好:希望能帮到你。互相学习。

线程的最大特点是资源的共享性,但资源共享中的同步问题是多线程编程的难点。linux下提供了多种方式来处理线程同步,最常用的是互斥锁、条件变量和信号量。

1)互斥锁(mutex)

通过锁机制实现线程间的同步。同一时刻只允许一个线程执行一个关键部分的代码。

int pthread_mutex_init(pthread_mutex_t *mutex,const pthread_mutex_attr_t *mutexattr)

int pthread_mutex_lock(pthread_mutex *mutex)

int pthread_mutex_destroy(pthread_mutex *mutex)

int pthread_mutex_unlock(pthread_mutex *

(1)先初始化锁init()或静态赋值pthread_mutex_t mutex=PTHREAD_MUTEX_INITIALIER

attr_t有:

PTHREAD_MUTEX_TIMED_NP:其余线程等待队列

PTHREAD_MUTEX_RECURSIVE_NP:嵌套锁,允许线程多次加锁,不同线程,解锁后重新竞争

PTHREAD_MUTEX_ERRORCHECK_NP:检错,与一同,线程请求已用锁,返回EDEADLK

PTHREAD_MUTEX_ADAPTIVE_NP:适应锁,解锁后重新竞争

(2)加锁,lock,trylock,lock阻塞等待锁,trylock立即返回EBUSY

(3)解锁,unlock需满足是加锁状态,且由加锁线程解锁

(4)清除锁,destroy(此时锁必需unlock,否则返回EBUSY,//Linux下互斥锁不占用内存资源

示例代码

#include <cstdio>

#include <cstdlib>

#include <unistd.h>

#include <pthread.h>

#include "iostream"

using namespace std

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER

int tmp

void* thread(void *arg)

{

cout <<"thread id is " <<pthread_self() <<endl

pthread_mutex_lock(&mutex)

tmp = 12

cout <<"Now a is " <<tmp <<endl

pthread_mutex_unlock(&mutex)

return NULL

}

int main()

{

pthread_t id

cout <<"main thread id is " <<pthread_self() <<endl

tmp = 3

cout <<"In main func tmp = " <<tmp <<endl

if (!pthread_create(&id, NULL, thread, NULL))

{

cout <<"Create thread success!" <<endl

}

else

{

cout <<"Create thread failed!" <<endl

}

pthread_join(id, NULL)

pthread_mutex_destroy(&mutex)

return 0

}

编译: g++ -o thread testthread.cpp -lpthread

说明:pthread库不是Linux系统默认的库,连接时需要使用静态库libpthread.a,所以在使用pthread_create()创建线程,以及调用pthread_atfork()函数建立fork处理程序时,需要链接该库。在编译中要加 -lpthread参数。

2)条件变量(cond)

利用线程间共享的全局变量进行同步的一种机制。条件变量上的基本操作有:触发条件(当条件变为 true 时);等待条件,挂起线程直到其他线程触发条件。

int pthread_cond_init(pthread_cond_t *cond,pthread_condattr_t *cond_attr)

int pthread_cond_wait(pthread_cond_t *cond,pthread_mutex_t *mutex)

int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime)

int pthread_cond_destroy(pthread_cond_t *cond)

int pthread_cond_signal(pthread_cond_t *cond)

int pthread_cond_broadcast(pthread_cond_t *cond) //解除所有线程的阻塞

(1)初始化.init()或者pthread_cond_t cond=PTHREAD_COND_INITIALIER(前者为动态初始化,后者为静态初始化)属性置为NULL

(2)等待条件成立.pthread_wait,pthread_timewait.wait()释放锁,并阻塞等待条件变量为真,timewait()设置等待时间,仍未signal,返回ETIMEOUT(加锁保证只有一个线程wait)

(3)激活条件变量:pthread_cond_signal,pthread_cond_broadcast(激活所有等待线程)

(4)清除条件变量:destroy无线程等待,否则返回EBUSY

对于

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)

int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime)

一定要在mutex的锁定区域内使用。

如果要正确的使用pthread_mutex_lock与pthread_mutex_unlock,请参考

pthread_cleanup_push和pthread_cleanup_pop宏,它能够在线程被cancel的时候正确的释放mutex!

另外,posix1标准说,pthread_cond_signal与pthread_cond_broadcast无需考虑调用线程是否是mutex的拥有者,也就是说,可以在lock与unlock以外的区域调用。如果我们对调用行为不关心,那么请在lock区域之外调用吧。

说明:

(1)pthread_cond_wait 自动解锁互斥量(如同执行了pthread_unlock_mutex),并等待条件变量触发。这时线程挂起,不占用CPU时间,直到条件变量被触发(变量为ture)。在调用 pthread_cond_wait之前,应用程序必须加锁互斥量。pthread_cond_wait函数返回前,自动重新对互斥量加锁(如同执行了pthread_lock_mutex)。

(2)互斥量的解锁和在条件变量上挂起都是自动进行的。因此,在条件变量被触发前,如果所有的线程都要对互斥量加锁,这种机制可保证在线程加锁互斥量和进入等待条件变量期间,条件变量不被触发。条件变量要和互斥量相联结,以避免出现条件竞争——个线程预备等待一个条件变量,当它在真正进入等待之前,另一个线程恰好触发了该条件(条件满足信号有可能在测试条件和调用pthread_cond_wait函数(block)之间被发出,从而造成无限制的等待)。

(3)pthread_cond_timedwait 和 pthread_cond_wait 一样,自动解锁互斥量及等待条件变量,但它还限定了等待时间。如果在abstime指定的时间内cond未触发,互斥量mutex被重新加锁,且pthread_cond_timedwait返回错误 ETIMEDOUT。abstime 参数指定一个绝对时间,时间原点与 time 和 gettimeofday 相同:abstime = 0 表示 1970年1月1日00:00:00 GMT。

(4)pthread_cond_destroy 销毁一个条件变量,释放它拥有的资源。进入 pthread_cond_destroy 之前,必须没有在该条件变量上等待的线程。

(5)条件变量函数不是异步信号安全的,不应当在信号处理程序中进行调用。特别要注意,如果在信号处理程序中调用 pthread_cond_signal 或pthread_cond_boardcast 函数,可能导致调用线程死锁。

示例程序1

#include <stdio.h>

#include <pthread.h>

#include "stdlib.h"

#include "unistd.h"

pthread_mutex_t mutex

pthread_cond_t cond

void hander(void *arg)

{

free(arg)

(void)pthread_mutex_unlock(&mutex)

}

void *thread1(void *arg)

{

pthread_cleanup_push(hander, &mutex)

while(1)

{

printf("thread1 is running\n")

pthread_mutex_lock(&mutex)

pthread_cond_wait(&cond,&mutex)

printf("thread1 applied the condition\n")

pthread_mutex_unlock(&mutex)

sleep(4)

}

pthread_cleanup_pop(0)

}

void *thread2(void *arg)

{

while(1)

{

printf("thread2 is running\n")

pthread_mutex_lock(&mutex)

pthread_cond_wait(&cond,&mutex)

printf("thread2 applied the condition\n")

pthread_mutex_unlock(&mutex)

sleep(1)

}

}

int main()

{

pthread_t thid1,thid2

printf("condition variable study!\n")

pthread_mutex_init(&mutex,NULL)

pthread_cond_init(&cond,NULL)

pthread_create(&thid1,NULL,thread1,NULL)

pthread_create(&thid2,NULL,thread2,NULL)

sleep(1)

do

{

pthread_cond_signal(&cond)

}while(1)

sleep(20)

pthread_exit(0)

return 0

}

示例程序2:

#include <pthread.h>

#include <unistd.h>

#include "stdio.h"

#include "stdlib.h"

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER

static pthread_cond_t cond = PTHREAD_COND_INITIALIZER

struct node

{

int n_number

struct node *n_next

} *head = NULL

/*[thread_func]*/

static void cleanup_handler(void *arg)

{

printf("Cleanup handler of second thread./n")

free(arg)

(void)pthread_mutex_unlock(&mtx)

}

static void *thread_func(void *arg)

{

struct node *p = NULL

pthread_cleanup_push(cleanup_handler, p)

while (1)

{

//这个mutex主要是用来保证pthread_cond_wait的并发性

pthread_mutex_lock(&mtx)

while (head == NULL)

{

//这个while要特别说明一下,单个pthread_cond_wait功能很完善,为何

//这里要有一个while (head == NULL)呢?因为pthread_cond_wait里的线

//程可能会被意外唤醒,如果这个时候head != NULL,则不是我们想要的情况。

//这个时候,应该让线程继续进入pthread_cond_wait

// pthread_cond_wait会先解除之前的pthread_mutex_lock锁定的mtx,

//然后阻塞在等待对列里休眠,直到再次被唤醒(大多数情况下是等待的条件成立

//而被唤醒,唤醒后,该进程会先锁定先pthread_mutex_lock(&mtx),再读取资源

//用这个流程是比较清楚的/*block-->unlock-->wait() return-->lock*/

pthread_cond_wait(&cond, &mtx)

p = head

head = head->n_next

printf("Got %d from front of queue/n", p->n_number)

free(p)

}

pthread_mutex_unlock(&mtx)//临界区数据操作完毕,释放互斥锁

}

pthread_cleanup_pop(0)

return 0

}

int main(void)

{

pthread_t tid

int i

struct node *p

//子线程会一直等待资源,类似生产者和消费者,但是这里的消费者可以是多个消费者,而

//不仅仅支持普通的单个消费者,这个模型虽然简单,但是很强大

pthread_create(&tid, NULL, thread_func, NULL)

sleep(1)

for (i = 0i <10i++)

{

p = (struct node*)malloc(sizeof(struct node))

p->n_number = i

pthread_mutex_lock(&mtx)//需要操作head这个临界资源,先加锁,

p->n_next = head

head = p

pthread_cond_signal(&cond)

pthread_mutex_unlock(&mtx)//解锁

sleep(1)

}

printf("thread 1 wanna end the line.So cancel thread 2./n")

//关于pthread_cancel,有一点额外的说明,它是从外部终止子线程,子线程会在最近的取消点,退出

//线程,而在我们的代码里,最近的取消点肯定就是pthread_cond_wait()了。

pthread_cancel(tid)

pthread_join(tid, NULL)

printf("All done -- exiting/n")

return 0

}

3)信号量

如同进程一样,线程也可以通过信号量来实现通信,虽然是轻量级的。

信号量函数的名字都以"sem_"打头。线程使用的基本信号量函数有四个。

#include <semaphore.h>

int sem_init (sem_t *sem , int pshared, unsigned int value)

这是对由sem指定的信号量进行初始化,设置好它的共享选项(linux 只支持为0,即表示它是当前进程的局部信号量),然后给它一个初始值VALUE。

两个原子操作函数:

int sem_wait(sem_t *sem)

int sem_post(sem_t *sem)

这两个函数都要用一个由sem_init调用初始化的信号量对象的指针做参数。

sem_post:给信号量的值加1;

sem_wait:给信号量减1;对一个值为0的信号量调用sem_wait,这个函数将会等待直到有其它线程使它不再是0为止。

int sem_destroy(sem_t *sem)

这个函数的作用是再我们用完信号量后都它进行清理。归还自己占有的一切资源。

示例代码:

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <pthread.h>

#include <semaphore.h>

#include <errno.h>

#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__)return}

typedef struct _PrivInfo

{

sem_t s1

sem_t s2

time_t end_time

}PrivInfo

static void info_init (PrivInfo* thiz)

static void info_destroy (PrivInfo* thiz)

static void* pthread_func_1 (PrivInfo* thiz)

static void* pthread_func_2 (PrivInfo* thiz)

int main (int argc, char** argv)

{

pthread_t pt_1 = 0

pthread_t pt_2 = 0

int ret = 0

PrivInfo* thiz = NULL

thiz = (PrivInfo* )malloc (sizeof (PrivInfo))

if (thiz == NULL)

{

printf ("[%s]: Failed to malloc priv./n")

return -1

}

info_init (thiz)

ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz)

if (ret != 0)

{

perror ("pthread_1_create:")

}

ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz)

if (ret != 0)

{

perror ("pthread_2_create:")

}

pthread_join (pt_1, NULL)

pthread_join (pt_2, NULL)

info_destroy (thiz)

return 0

}

static void info_init (PrivInfo* thiz)

{

return_if_fail (thiz != NULL)

thiz->end_time = time(NULL) + 10

sem_init (&thiz->s1, 0, 1)

sem_init (&thiz->s2, 0, 0)

return

}

static void info_destroy (PrivInfo* thiz)

{

return_if_fail (thiz != NULL)

sem_destroy (&thiz->s1)

sem_destroy (&thiz->s2)

free (thiz)

thiz = NULL

return

}

static void* pthread_func_1 (PrivInfo* thiz)

{

return_if_fail (thiz != NULL)

while (time(NULL) <thiz->end_time)

{

sem_wait (&thiz->s2)

printf ("pthread1: pthread1 get the lock./n")

sem_post (&thiz->s1)

printf ("pthread1: pthread1 unlock/n")

sleep (1)

}

return

}

static void* pthread_func_2 (PrivInfo* thiz)

{

return_if_fail (thiz != NULL)

while (time (NULL) <thiz->end_time)

{

sem_wait (&thiz->s1)

printf ("pthread2: pthread2 get the unlock./n")

sem_post (&thiz->s2)

printf ("pthread2: pthread2 unlock./n")

sleep (1)

}

return

}

通 过执行结果后,可以看出,会先执行线程二的函数,然后再执行线程一的函数。它们两就实现了同步


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/250551.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-14
下一篇2023-04-14

发表评论

登录后才能评论

评论列表(0条)

    保存