EBSD即电子背散射衍射。EBSD的原理始于20世纪50年代,技术问世于80年代。EBSD是扫描电子显微镜(SEM)的一个标准分析附件,但大大拓宽了扫描电子显微镜进行微观分析的功能。它可以与SEM的其他功能(包括EDS等配件)结合起来,原位成像、成分分析、大样品分析、粗糙表面成像等,克服了传统分析方法中的一些缺陷。
EBSD系统主要由背散射探测器、高灵敏度CCD数字照相机、图像采集卡、计算机分析软件及数据库等组成(图7-2)。探测器用于获取样品中激发出的背散射电子信号;高灵敏度CCD数字照相机获得electron backscat-ter pattern图像后,经过图像采集卡输送到计算机系统。计算机自动对于采集的图像进行识别和标定,同时与标准数据库进行比对,进而获得晶体颗粒的结晶学信息。
EBSD系统把显微构造与晶格结构(或结晶学)直接联系起来;测定优势定向颗粒群中单个晶体颗粒的定向;标定晶体颗粒的基本几何属性参数;获取超微尺度上晶体界面属性在内的晶体空间要素的大量信息等。目前EBSD已经成为一种非常成熟的技术,并在材料科学、地质学、冶金学、考古学等领域得到了广泛的应用。尤其是在材料科学中,已经成为物质材料显微组构、构造标定和研究的一种常规手段。
EBSD技术的发展和应用,也为岩石超微构造分析与研究拓展了新的空间。自90年代中期EBSD技术引入变形岩石显微构造与结构分析研究中以来,不少学者对于具有特殊性(即非导电性和晶体结构非对称性)的岩石样品开展了初步研究工作。在岩石显微构造研究中,通过EBSD可以快速获取海量数据,使得研究极细粒物质(微米-纳米级)的定向组构成为可能,确定二轴晶矿物的结晶学组构(如角闪石)更简便;也为获得快速准确地确定金属矿物和不透明矿物及等轴晶系均质体矿物(如石榴子石)的结晶学组构提供了技术支撑;更可以开展岩石显微构造、矿物塑性变形机制;矿物相鉴定、矿物相变、晶粒尺寸测量、超微域内的应变估算、矿物晶格优选方位(LPO)与地震波各向异性的关系研究等;并通过岩石微观和超微观构造,反演和示踪地球动力学过程的信息等等。
总之,EBSD技术的广泛应用,必将带来岩石显微构造分析与研究的新突破,也将成为未来一个时期岩石变形机制与岩石圈流变学研究取得飞速发展的催化剂。
EBSD制样:EBSD分析对于样品表面的抛光度要求较高,有不同的制作方法,包括机械抛光、电解抛光、离子束抛光和聚焦离子束(FIB,focused ion beam)切割。下面简单介绍最常使用的机械抛光方法。
机械抛光过程的主要目的,在于将样品制备初期阶段磨制过程中在样品表面形成的几个纳米厚的变形层去除,以使得背散射电子信号有效地反映晶体内部结构特征。样品制备包括两个阶段,即磨制阶段和抛光阶段:
(1)磨片:将拟观察分析的样品制作成普通光片或光薄片,最好用较细的金刚砂磨制薄片;(2)抛光:依次使用9μm、6μm、3μm金刚石溶液、1μm alpha氧化铝或0.3μmalpha氧化铝和0.05μm或0.02μm硅胶/氧化铝抛光液或抛光膏进行抛光。
对于不导电的非金属样品,还需要在样品表面喷碳或镀金,以便于观察和获取更好的信号。值得注意的是,由于背散射电子获取的信号是样品表面10nm以内的晶体结构信息,样品喷镀的厚度需要严格掌握。
理论上单纯用SEM不能测出晶型,测晶型一般用XRD等仪器。扫描电镜只能观察形貌,分辨率可达亚微米级别。不过对于特定的样品,如果具有明确的晶型,借助SEM形貌有可能分析出晶型(比如一种物质只有区别明显的两种晶型,借助确定的形貌可以推断是那种晶型)。另外,SEM通过加装EBSD附件,通过观察也有可能观察晶型
聚焦离子束扫描电镜双束系统(FIB-SEM)是在SEM的基础上增加了聚焦离子束镜筒的双束系统,同时具备微纳加工和成像的功能,广泛应用于科学研究和半导体芯片研发等多个领域。本文记录一下FIB-SEM在材料研究中的应用。
以目前实验室配有的FIB-SEM的型号是蔡司的Crossbeam 540为例进行如下分析,离子束最高成像分辨率为3nm,电子束最高分辨率为0.9nm。该系统的主要部件及功能如下:
1.离子束: 溅射(切割、抛光、刻蚀);刻蚀最小线宽10nm,切片最薄3nm。
2.电子束 : 成像和实时观察
3.GIS(气体注入系统): 沉积和辅助刻蚀;五种气体:Pt、W、SiO2、Au、XeF2(增强刻蚀SiO2)
4.纳米机械手: 转移样品
5.EDS: 成分定量和分布
6.EBSD : 微区晶向及晶粒分布
7.Loadlock(样品预抽室): 快速进样,进样时间只需~1min
由上述FIB-SEM的一个部件或多个部件联合使用,可以实现在材料研究中的多种应用,具体应用实例如下:
图2a和b分别是梳子形状的CdS微米线的光学显微镜和扫描电镜照片,从光学显微镜照片可以看出在CdS微米线节点处内部含有其他物质,但无法确定是什么材料和内部形貌。利用FIB-SEM在节点处定点切割截面,然后对截面成像和做EDS mapping,如图2c、d、e和f所示,可以很直观的得到在CdS微米线的节点处内部含有Sn球。
FIB-SEM制备TEM样品的常规步骤如图3所示,主要有以下几步:
1)在样品感兴趣位置沉积pt保护层
2)在感兴趣区域的两侧挖大坑,得到只有约1微米厚的薄片
3)对薄片进行U-cut,将薄片底部和一侧完全切断
4)缓慢移下纳米机械手,轻轻接触薄片悬空的一端后,沉积pt将薄片和纳米机械手焊接牢固,然后切断薄片另一侧,缓慢升起纳米机械手即可提出薄片
5)移动样品台和纳米机械手,使薄片与铜网(放置TEM样品用)轻轻接触,然后沉积pt将薄片和铜网焊接牢固,将薄片和纳米机械手连接的一端切断,移开纳米机械手,转移完成
6)最后一步为减薄和清洗,先用大加速电压离子束将薄片减薄至150nm左右,再利用低电压离子束将其减薄至最终厚度(普通TEM样品<100nm,高分辨TEM样品50nm左右,球差TEM样品<50nm)
一种如图4a所示的MoS2场效应管,需要确定实际器件中MoS2的层数及栅极(Ag纳米线)和MoS2之间的距离。利用FIB-SEM可以准确的在MoS2场效应管的沟道位置,垂直于Ag纳米线方向,提出一个薄片,并对其进行减薄,制备成截面透射样。在TEM下即可得到MoS2的层数为14层(图4c), Ag纳米线和MoS2之间的距离为30nm(图4b)。
图5是一种锰酸锂材料的STEM像,该样品是由FIB-SEM制备,图中可以看到清晰的原子像。这表明FIB-SEM制备的该球差透射样非常薄并且有很少的损伤层。
FIB-SEM还可以进行微纳图形的加工。
图6a 是FIB-SEM在Au/SiO2上制备的光栅,光栅周期为150nm,光栅开口为75nm。
图6b 是利用FIB-SEM在Mo/石英上做的切仑科夫辐射源针尖,针尖曲率半径为17nm。
图6c 是在Au膜上加工的三维对称结构蜘蛛网。
图6d 是FIB-SEM在硅上刻蚀的贺新年图案,图中最小细节尺寸仅有25nm。
FIB-SEM可以对材料进行切片式的形貌和成分三维重构,揭示材料的内部三维结构。大概过程如图7a所示, FIB切掉一定厚度的样品,SEM拍一张照片,重复此过程,连续拍上百张照片,然后将上百张切片照片重构出三维形貌。图7b是一种多孔材料内部3×5×2um范围的三维重构结果,其实验数据是利用FIB-SEM采集,三维重构是利用Avizo软件得到,其分辩率可达纳米级,展示了内部孔隙的三维空间分布,并可以计算出孔隙的半径大小、体积及曲率等参数。
利用FIB-SEM配有的纳米机械手及配合使用离子束沉积Pt,可以实现微米材料的转移,即把某种材料从一个位置(衬底)转移到特定位置(衬底),并固定牢固。图8是把四针氧化锌微米线从硅片转移到两电极的沟道之间,从而制备成两个微米线间距只有1um的特殊器件。
最后,FIB-SEM还有很多其他的应用,例如三维原子探针样品制备,芯片线路修改等。总之FIB-SEM是材料研究中一个非常重要的手段。
不积珪步,无以至千里;不积细流,无以成江海。做好每一份工作,都需要坚持不懈的学习。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)