纳米材料的次级结构是什么

纳米材料的次级结构是什么,第1张

级次结构纳米材料是由基本纳米结构单元按照一定规律构筑的一种新体系,它包括一维、二维和三维体系,体系中至少有一个维度方向处于纳米尺度范围,所以级次结构纳米材料既具备纳米颗粒的本征特性,又存在由纳米结构组合引起的耦合与协同效应,由此赋予了级次结构纳米材料一系列新颖的物理和化学性质,在磁学、光电器件、能量存储、传感和催化等领域有很广阔的应用前景,因此纳米结构材料吸引了化学家和材料学家的极大兴趣。本论文讨论了水热/溶剂热法合成了珊瑚状四氧化三铁、系列核壳结构的硫化物盒子和花状的氢氧化镍的过程,并探索了目的产物的形成机理,表征了其物理化学性质,讨论了性质与其微观结构的关系。 1.葡萄糖助溶剂热合成级次结构的四氧化三铁 在乙二醇/水的混合溶剂体系中,以七水合硫酸亚铁和氢氧化钾为原料,以葡萄糖分子及其衍生物为铁离子的稳定剂,在200℃的溶剂热条件下合成了珊瑚状的级次结构的四氧化三铁,次级结构的Fe3O4由约粒径10nm的纳米晶聚集而成,其中级次结构的根部是纳米晶颗粒无规则聚集而成的,而由根部生长的枝状结构则是定向聚集的,延长反应时间,级次结构最终解离为离散的Fe3O4纳米颗粒。研究表明在KOH碱性条件下,部分葡萄糖氧化为五碳糖、葡萄糖醛酸和葡萄糖苷等衍生物,而葡萄糖分子及其衍生物拥有的丰富羟基和羧基可与铁离子形成稳定螯合物,随着反应的进行,葡萄糖分子及其衍生物逐渐氧化降解,从而缓慢的释放铁离子形成Fe3O4纳米晶,这个过程为级次结构Fe3O4的形成提供了一个速控步,这样就在溶液中形成了一个浓度梯度,该浓度梯度振荡会导致Fe3O4纳米颗粒聚集成珊瑚状级次结构。在热流方向作用下,级次结构以扇形辐射状向外聚集生长,磁性质测试表明级次结构中颗粒间的耦合效应使Fe3O4聚集体在磁场下表现出了较强的矫顽力。 2.基于Kirkendall效应和Pearson酸碱理论合成金属硫化物纳米盒子 本章讨论了首先在Fe3+的辅助下,利用盐酸刻蚀银纳米团簇制得了作为牺牲模板的氯化银纳米方块,接下来利用溶度积效应将氯化银转化为核壳结构的硫化银纳米盒子,阴离子交换过程中伴随的Kirkendall效应造成了硫化银表面和内部空隙的形成最后利用Pearson软硬酸碱理论,以甲醇为溶剂,三丁基膦为银离子的相转移剂进行阳离子交换反应,该过程表现为局域规整反应,制得了形貌和结构的完整性保持良好的硫化镉、硫化铅、硫化锌和硫铟银。紫外-可见漫反射光谱表明,制备的硫化镉纳米盒子在可见光范围内有较好的吸收效率,这归因于硫化镉盒子特殊的核壳结构和硫化镉颗粒间的电子耦合可产生自缩小带隙。 3.超薄纳米片构成的级次花状β-Ni(OH)2的水热合成及其赝电容和气敏性能 以六水合氯化镍和六亚甲基四胺为原料,水热回流合成了超薄纳米片构成的花状β-Ni(OH)2,TEM与SEM观察发现花状结构是由中心位置向外生长了若干纳米片,纳米片边长大于500nm,XRD和HR-TEM表明纳米片厚度约9.5nm,厚度方向为[001]方向,超薄的纳米片可为离子迁移提供了非常短的扩散通道,可快速响应气体分子的吸附,利于提高样品的电化学活性或气敏性质。电化学测量表明,花状结构β-Ni(OH)2制成的电极在1A/g的电流密度下的比电容为1727F/g,增加电流密度到20A/g,样品的比电容仍然可保持到1235F/g。循环测试表明,经过1000次的充放电后,在1A/g时,其比电容只有1.6%的损耗在20A/g时,其比电容的损耗为27.9%。另外,气敏测试,表明β-Ni(OH)2制成的器件对1ppm的乙醇和丙酮依然有响应信号。

用STM进行单原子操纵主要包括三个部分,即单原子的移动,提取和放置。使用STM进行单原子操纵的较为普遍的方法是在STM针尖和样品表面之间施加一适当幅值和宽度的电压脉冲,一般为数伏电压和数十毫秒宽度。由于针尖和样品表面之间的距离非常接近,仅为0.3-1.0nm。因此在电压脉冲的作用下,将会在针尖和样品之间产主一个强度在 109~1010V/m数量级的强大电场。这样,表面上的吸附原子将会在强电场的蒸发下被移动或提取,并在表面上留下原子空穴,实现单原子的移动和提取操纵。同样,吸附在STM针尖上的原子也有可能在强电场的蒸发下而沉积到样品的表面上,实现单原子的放置操纵。

近代以来,由于人们的观察视野已经延伸到了纳米领域,而光束在成像时总会受到有限大小的有效光阑的限制,所以此时光的衍射作用就不容忽略了。对于显微镜来说,其发光物一般距物像很近,这时应考虑菲涅尔衍射,物点成像后在像面上应成为一菲涅尔圆斑,不过通常情况下,我们可以用夫琅禾费圆斑进行近似替代。那么光学显微镜的分辨率最佳只能达到阿贝极限:0.2μm。即便如德国科学家施特芬·黑尔等科学家制作出的借助脉冲激光突破阿贝极限的光学显微镜,分辨率也仅停留在20nm,依然难以满足人们进军微观领域的需要。而且此显微镜价格高昂,在80万欧元左右。事实上,当年白春礼教授仅仅借助从国外带来的几个重要零件并加以组装就得到了STM。一台普通的STM价格都在10万RMB以下。因此我们需要寻找更经济且性能更好的显微镜来替代光学显微镜。

在这种情况下,扫描探针、光导镊子、高解析度电镜就应运而生。其中,运用探针进行进场操作的扫描探针显微技术无疑引起了人们最为广泛的关注。

扫描探针显微术SPM

扫描探针显微技术主要是利用顶端约1-10Å的探针来3D解析固体表面纳米尺度上的局部性质。扫描探针显微镜SPMs就是一系列的基于扫描探针显微术而发展起来的显微镜,它包括STM、AFM、LFM、MFM等等。其中STM和AFM的发明使得各种扫描探针显微技术有了长足的发展,下面我们先来看一下迄今为止衍生出来的主要的扫描探针分析仪:

电子结构:扫描隧道电流镜STS

STS用来在低温情况下测定电子结构;

光学性质:近场扫描光学显微镜NSOM

NSOM打破了衍射限制,允许光进入亚微米波长范围(50-100nm),用于弹性和非弹性的光学扫描测定,也可以用于光刻技术;

温度:热扫描显微镜STHM

STHM用温度传感器绘制出电子/光电子纳米器件的温度场,测定纳米结构的热物理性质;

介电常数:扫描电容显微镜SCM

SCM主要应用在半导体上。由于半导体电容依赖于载流子的浓度,因此研究者可以用SCM绘制出掺杂剂在半导体中的分布图。它优越之处在于纳米尺度上的立体分辨能力;

磁性:磁力共振显微镜MFM

MFM可以给磁域成像作为磁存储介质的综合性表征,MFM测定核与电子的自旋共振并具有亚微米级的解析力,这可能使它成为化学分析的基础;

电荷传递和亥姆霍兹层:扫描电化学SECM

生物分子折叠/识别:纳米机械显微镜

以前只能停留在总体的平均测定,现在可以更深入的测定生物系统的分子现象。

扫描隧道显微镜STM

不过,以上各种仪器只是对STM和AFM的补充和发展。其中STM作为“主角”,意义尤为重大,被国际科学界公认为20世纪80年代世界十大科技成就之一。甚至有人将STM的发明的当年作为纳米科技元年。那么我们不妨具体看一下STM和AFM。

扫描隧道显微镜(scanning tunneling microscope)STM,也称作扫描穿隧式显微镜、隧道扫描显微镜。第一台STM诞生于瑞士的苏黎世研究所。STM可以让科学家观察和定位单个原子,它具有AFM更高的分辨率。STM平行方向的分辨率为0.04nm,垂直方向的分辨率达到0.01nm。此外STM在低温(4K)可以利用探针尖端精确操纵原子。因此STM不仅仅是探测工具,更是加工工具。

如图所示,STM主要构成有:顶部直径约为50-100nm的极细金属针尖(通常是金属钨),用于三维扫描的三个相互垂直的压电陶瓷(Px、Py、Pz),以及用于扫描和电流反馈的控制器。

STM的基本原理是量子的隧道效应。它利用金属针尖在样品的表面上进行扫描,并根据量子隧道效应来获得样品表面的图像。通常STM的针尖与样品的距离非常接近(大约为0.5-1.0nm),所以它们之间的电子云互相重叠。当在它们之间施加一偏值电压V(通常为2mV-2V)时,电子就可以因量子隧道效应实现针尖与样品之间的转移,从而在针尖与样品表面之间形成隧道电流。

其中,K是常数,在真空条件下约等于1,φ为针尖与样品的平均功函数,s为针尖和样品表面之间的距离,一般为0.3-1.0nm。

由于隧道电流I与针尖和样品表面之间的距离s成指数关系,所以,电流I对s的变化非常敏感。一般来说,如果s减小0.1nm,隧道电流I就会减小10倍。

既然STM是靠隧道电流I和距离s进行工作的,那么自然,STM有两种工作模式:恒电流工作模式和恒高度工作模式。恒电流模式就是在STM图像扫描时始终保持隧道电流恒定,它可以利用反馈回路控制针尖和样品之间距离的不断变化来实现。当压电陶瓷Px、Py控制针尖在样品表面上扫描时,从反馈回路中取出针尖在样品表面扫描过程中他们之间距离变化的信息(该信息用来反映样品表面的起伏),就可以得到样品表面的原子图像。由于恒电流模式时,STM的针尖是随着样品表面形貌的起伏而上下移动,针尖不会因为表面形貌起伏太大而碰撞到样品的表面,所以恒电流模式可以用于观察表面形貌起伏较大的样品。恒电流模式也是一种最常用的扫描模式。

恒高度模式则是始终控制针尖的高度不变,并取出扫描过程中针尖和样品之间电流变化的信息(该信息也反映样品表面的起伏),来绘制样品表面的原子图像。由于在恒高度模式的扫描过程中,针尖的高度恒定不变,当表面形貌起伏较大时,针尖就很容易碰撞到样品。所以恒高度模式只能用于观察表面形貌起伏不大的样品。

扫描隧道显微镜具有以下显著的特点:一是STM可以直接观测到材料表面的单个原子和原子在表面上的三维结构图像;二是STM在观测材料表面原子结构的同时得到材料表面的扫描隧道谱STS,从而可以研究材料表面的化学结构和电子状态。

此外,上面我们提到过STM不仅仅是探测工具,更是加工工具。也就是说,STM的针尖不仅可以成像,还可以用于操纵表面上的原子或分子。

用STM进行单原子操纵主要包括三个部分,即单原子的移动,提取和放置。使用STM进行单原子操纵的较为普遍的方法是在STM针尖和样品表面之间施加一适当幅值和宽度的电压脉冲,一般为数伏电压和数十毫秒宽度。由于针尖和样品表面之间的距离非常接近,仅为0.3-1.0nm。因此在电压脉冲的作用下,将会在针尖和样品之间产主一个强度在 109~1010V/m数量级的强大电场。这样,表面上的吸附原子将会在强电场的蒸发下被移动或提取,并在表面上留下原子空穴,实现单原子的移动和提取操纵。同样,吸附在STM针尖上的原子也有可能在强电场的蒸发下而沉积到样品的表面上,实现单原子的放置操纵。

STM的优越性还体现在STM实验还可以在多种环境中进行:大气、惰性气体、超高真空或液体。工作温度可以从绝对零度附近到上千摄氏度。这些都是以前任何一种显微技术都不能同时做到的。

不过在每一种显微电镜中,基础物理学都限制了其测定的范围。STM基于电子隧道,它的成像就受到隧道物理学或入射低能电子影响的弛豫过程限制。而且,STM所观察的样品一定要有一定程度的导电性,否则效果会很差。

原子力显微镜AFM

相比之下,AFM具有更广泛的功能范围,可以响应探针与基质之间更多的力,如磁力、库伦力、色散力、摩擦力和核斥力等,也不会受到材料到点性质的影响。

在AFM中,使用对微弱力非常敏感的弹性悬臂上的针尖对样品表面作光栅式扫描。当针尖和样品表面的距离非常接近时,针尖尖端的原子与样品表面的原子之间存在极微弱的作用力,微悬臂就会发生微小的弹性形变。针尖与样品之间的力F与微悬臂的形变之间遵循胡克定律:F=-k*x。其中,k为微悬臂的力常数。所以,只要测出微悬臂形变量的大小,就可以获得针尖与样品之间作用力的大小。针尖与样品之间的作用力与距离有强烈的依赖关系,所以在扫描过程中利用反馈回路保持针尖与样品之间的作用力恒定,即保持为悬臂的形变量不变,针尖就会随样品表面的起伏上下移动,记录针尖上下运动的轨迹即可得到样品表面形貌的信息。这种工作模式被称为“恒力”模式,是使用最广泛的扫描方式。

AFM的图像也可以使用“恒高”模式来获得,也就是在X,Y扫描过程中,不使用反馈回路,保持针尖与样品之间的距离恒定,通过测量微悬臂Z方向的形变量来成像。这种方式不使用反馈回路,可以采用更高的扫描速度,通常在观察原子、分子像时用得比较多,而对于表面起伏比较大的样品不适用。

微观形貌检测技术

当然,任何一种发明都不是凭空产生的,都是在前人工作的基础上的改进。SPMs也不例外。在STM之前,就有几种微观形貌检测技术了,只不过它们的性能没有这么优越。

光学显微镜

投射电子显微镜TEM

TEM和光学显微镜的原理极为相似,只是用波长极短的电子束代替了可见光现,用静电或磁透镜代替光学玻璃透镜,最后在荧光屏上成像。TEM的放大倍数极高,点分辨率可达0.3nm,线分辨率可达0.144nm,已达原子级分辨率。用TEM观察物体内部显微结构时,可看到原子排列的晶格图像,并已观察到某些重金属原子的投影图像。只是用TEM检测时,试件需在真空室内。

TEM是通过电子束投过试件而放大成像的,电子束在材料中的衰减系数极大,故试件必须加工的很薄,因此限制了TEM的使用范围。

表面轮廓仪

表面轮廓仪是用探针对试件表面形貌进行接触测量,这与SPM的工作原理极为相似,只是后者使用了更尖锐的探针和灵敏的探针位移检测方法。

扫描电子显微镜SEM

SEM利用高能量、细聚焦的电子束在试件表面扫描,激发二次放电,利用二次放电信息对试件表面的组织或形貌进行检测、分析和成像的一种电子光学仪器。SEM的放大倍率在10—150000之间且连续可调,试件在真空室内还可按需要进行升降、平移、旋转或倾斜。

SEM在普通热钨丝电子枪条件下,分辨率为5-6nm,如果用场发射电子枪,分辨率可达2-3nm,不过分辨率还没有达到原子级别。

场发射形貌描绘仪

场发射原理在1956年由R.young提出,但直到1971年R.young和J.Ward才提出了应用场发射原理的形貌描绘仪。它在基本原理和操作上,是最接近STM的仪器。探针尖装在顶块上,可由X向和Y向压电陶瓷驱动,做X向和Y向扫描运动。试件装在下面的Z向压电陶瓷元件上,由反馈电路控制,保持针尖和试件间的距离。R.young使用的针尖曲率半径为几十纳米,针尖和试件间的距离为100nm。在试件上加正高压后,针尖与试件间产生场发射电流。探针在试件表面扫描,可根据场发射电流的大小,检测出试件表面的形貌。R.young用形貌描绘仪继续进行研究,发现当探针尖与试件间距离很近时,较小的外加偏压V即可产生隧道电流,并且隧道电流I对距离s极为敏感。他们观察到的I和V为线性关系,后人估计针尖与试件间的距离为1.2nm。可惜他们的研究到此为止,未在检测试件形貌时利用隧道电流效应,因而与STM的发明失之交臂。假如他能及时想到缩小针尖与试件表面间的距离,那么STM公布发表时的发明人名字就是R.Young了。可惜他没有意识到这一点,更没有去缩短那一点的该死的微小距离。

附:TEM与SEM的比较

比较项目 显微镜类型 TEM SEM

镜身长度 长,要能让电子加速 短,只需要保证与样品间的距离

分辨率 高,能达到原子级别 低,停留在纳米级别

投影图像 平面图形,无立体感 有极强的立体感

图像背景 背景亮,试样处暗 背景暗,试样处亮

工作原理 与光学显微镜类似 利用光电效应产生的电子获得立体图像

收集器位置 在镜身底部 在镜身上部

适用范围 5-500nm的薄片 可以比较厚

能否区分晶体 能,可看到晶格图像 不包含结构信息,无法区分单晶多晶非晶

能否收集到样品内部信息 可收集到样品内部信息 只能收集到样品表层信息

能否动态观察 不能,样品固定 样品位置可以调节,可进行动态观察

能否连续观察 开始工作后倍率相对固定 开始工作后可进行从低倍到高倍的连续观察

原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表面的形貌或原子成分.\x0d\x0a详细\x0d\x0a 图1. 激光检测原子力显微镜探针工作示意图\x0d\x0a原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息。下面,我们以激光检测原子力显微镜(Atomic Force Microscope Employing Laser Beam Deflection for Force Detection,Laser-AFM)——扫描探针显微镜家族中最常用的一种为例,来详细说明其工作原理。 如图1所示,二极管激光器(Laser Diode)发出的激光束经过光学系统聚焦在微悬臂(Cantilever)背面,并从微悬臂背面反射到由光电二极管构成的光斑位置检测器(Detector)。在样品扫描时,由于样品表面的原子与微悬臂探针尖端的原子间的相互作用力,微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过光电二极管检测光斑位置的变化,就能获得被测样品表面形貌的信息。 子力显微镜——原理图\x0d\x0a在系统检测成像全过程中,探针和被测样品间的距离始终保持在纳米(10e-9米)量级,距离太大不能获得样品表面的信息,距离太小会损伤探针和被测样品,反馈回路(Feedback)的作用就是在工作过程中,由探针得到探针-样品相互作用的强度,来改变加在样品扫描器垂直方向的电压,从而使样品伸缩,调节探针和被测样品间的距离,反过来控制探针-样品相互作用的强度,实现反馈控制。因此,反馈控制是本系统的核心工作机制。本系统采用数字反馈控制回路,用户在控制软件的参数工具栏通过以参考电流、积分增益和比例增益几个参数的设置来对该反馈回路的特性进行控制。\x0d\x0a编辑本段优缺点\x0d\x0a优点\x0d\x0a 原子力显微镜观察到的图像\x0d\x0a相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。\x0d\x0a缺点\x0d\x0a和扫描电子显微镜(SEM)相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。原子力显微镜(Atomic Force Microscope)是继扫描隧道显微镜(Scanning Tunneling Microscope)之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测,或者直接进行纳米操纵;现已广泛应用于半导体、纳米功能材料、生物、化工、食品、医药研究和科研院所各种纳米相关学科的研究实验等领域中,成为纳米科学研究的基本工具。原子力显微镜与扫描隧道显微镜相比,由于能观测非导电样品,因此具有更为广泛的适用性。当前在科学研究和工业界广泛使用的扫描力显微镜(Scanning Force Microscope),其基础就是原子力显微镜。\x0d\x0a编辑本段仪器结构\x0d\x0a在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。\x0d\x0a力检测部分\x0d\x0a在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是使用微小悬臂(cantilever)来检测原子之间力的变化量。微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。这微小悬臂有一定的规格,例如:长度、宽度、弹性系数以及针尖的形状,而这些规格的选择是依照样品的特性,以及操作模式的不同,而选择不同类型的探针。\x0d\x0a位置检测部分\x0d\x0a 原子力显微镜\x0d\x0a在原子力显微镜(AFM)的系统中,当针尖与样品之间有了交互作用之后,会使得悬臂cantilever摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信号处理。\x0d\x0a反馈系统\x0d\x0a在原子力显微镜(AFM)的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。\x0d\x0a总结\x0d\x0aAFM系统使用压电陶瓷管制作的扫描器精确控制微小的扫描移动。压电陶瓷是一种性能奇特的材料,当在压电陶瓷对称的两个端面加上电压时,压电陶瓷会按特定的方向伸长或缩短。而伸长或缩短的尺寸与所加的电压的大小成线性关系。也就是说,可以通过改变电压来控制压电陶瓷的微小伸缩。通常把三个分别代表X,Y,Z方向的压电陶瓷块组成三角架的形状,通过控制X,Y方向伸缩达到驱动探针在样品表面扫描的目的;通过控制Z方向压电陶瓷的伸缩达到控制探针与样品之间距离的目的


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/255697.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-15
下一篇2023-04-15

发表评论

登录后才能评论

评论列表(0条)

    保存