(计算机操作系统)wait操作和signal操作什么意思?

(计算机操作系统)wait操作和signal操作什么意思?,第1张

规定在拿到左侧的筷子后,先检查右面的筷子是否可用。如果不可用,则先放下左侧筷子, 等一段时间再重复整个过程。 分析:当出现以下情形,在某一个瞬间,所有的哲学家都同时启动这个算法,拿起左侧的筷 子,而看到右侧筷子不可用,又都放下左侧筷子,等一会儿,又同时拿起左侧筷子……如此 这样永远重复下去。对于这种情况,所有的程序都在运行,但却无法取得进展,即出现饥饿, 所有的哲学家都吃不上饭。 (2) 描述一种没有人饿死(永远拿不到筷子)算法。 考虑了四种实现的方式(A、B、C、D): A.原理:至多只允许四个哲学家同时进餐,以保证至少有一个哲学家能够进餐,最终总会释 放出他所使用过的两支筷子,从而可使更多的哲学家进餐。以下将room 作为信号量,只允 许4 个哲学家同时进入餐厅就餐,这样就能保证至少有一个哲学家可以就餐,而申请进入 餐厅的哲学家进入room 的等待队列,根据FIFO 的原则,总会进入到餐厅就餐,因此不会 出现饿死和死锁的现象。 伪码: semaphore chopstick[5]=semaphore room=4void philosopher(int i) } B.原理:仅当哲学家的左右两支筷子都可用时,才允许他拿起筷子进餐。 方法1:利用AND 型信号量机制实现:根据课程讲述,在一个原语中,将一段代码同时需 要的多个临界资源,要么全部分配给它,要么一个都不分配,因此不会出现死锁的情形。当 某些资源不够时阻塞调用进程由于等待队列的存在,使得对资源的请求满足FIFO 的要求, 因此不会出现饥饿的情形。 伪码: semaphore chopstick[5]=void philosopher(int I) } 方法2:利用信号量的保护机制实现。通过信号量mutex对eat()之前的取左侧和右侧筷 子的操作进行保护,使之成为一个原子操作,这样可以防止死锁的出现。 伪码: semaphore mutex = 1 semaphore chopstick[5]=void philosopher(int I) }

sem_wait() 减小(锁定)由sem指定的信号量的值.如果信号量的值比0大,那么进行减一的操作,函数立即返回.如果信号量当前为0值,那么调用就会一直阻塞直到或者是信号量变得可以进行减一的操作(例如,信号量的值比0大),或者是信号处理程序中断调用

sem_trywait() 和 sem_wait()是一样的,除了如果不能够对信号量立即进行减一,那么sem_trywait()就会返回一个错误(错误号是AGAIN)而不是锁定.sem_timedwait() 和 sem_wait()是一样的,除了如果减一操作不能立即执行的话,abs_timeout 指定了调用应该被阻塞的时间限制.abs_timeout 参数指向了一个结构体指定了由秒和纳秒组成的绝对的超时值:从1970-01-01 00:00:00 +0000纪元开始的UTC,结构体的定义如下:struct timespec {time_t tv_sec/* Seconds */long tv_nsec/* Nanoseconds [0 .. 999999999] */}如果超时值已经超过了调用规定的值,那么信号量不能被立即锁定,之后sem_timedwait() 为超时失败(error设置为ETIMEDOUT).

如果操作立即生效,那么sem_timedwait() 永远不会返回超时的错误,不管abs_timeout的值.更进一步的是,在这种情况下abs_timeout值的有效性都不会检查. EINTR The call was interrupted by a signal handlersee signal(7).//调用被信号处理中断

EINVAL sem is not a valid semaphore.//sem不是有效的信号量

The following additional error can occur for sem_trywait()://下面的错误是sem_trywait()可能发生的:

EAGAIN The operation could not be performed without blocking (i.e., thesemaphore currently has the value zero).//除了锁定无法进行别的操作(如信号量当前是0值).

The following additional errors can occur for sem_timedwait()://下面的错误是sem_timedwait()可能发生的:

EINVAL The value of abs_timeout.tv_nsecs is less than 0, or greater than orequal to 1000 million.//abs_timeout.tv_nsecs 的值比0小或者大于等于1000毫秒(译者注:纳秒的值不能比0小,不能比1秒大)

ETIMEDOUTThe call timed out before the semaphore could be locked.//在信号量锁定之前就超时了 对这些函数,信号处理程序总是会中断阻塞,不管是否使用了sigaction(2)的SA_RESTART标志位.

信号量是包含一个非负整数型的变量,并且带有两个原子操作wait和signal。Wait还可以被称为down、P或lock,signal还可以被称为up、V、unlock或post。在UNIX的API中(POSIX标准)用的是wait和post。

对于wait操作,如果信号量的非负整形变量S大于0,wait就将其减1,如果S等于0,wait就将调用线程阻塞;对于post操作,如果有线程在信号量上阻塞(此时S等于0),post就会解除对某个等待线程的阻塞,使其从wait中返回,如果没有线程阻塞在信号量上,post就将S加1.

由此可见,S可以被理解为一种资源的数量,信号量即是通过控制这种资源的分配来实现互斥和同步的。如果把S设为1,那么信号量即可使多线程并发运行。另外,信号量不仅允许使用者申请和释放资源,而且还允许使用者创造资源,这就赋予了信号量实现同步的功能。可见信号量的功能要比互斥量丰富许多。

POSIX信号量是一个sem_t类型的变量,但POSIX有两种信号量的实现机制: 无名信号量 命名信号量 。无名信号量只可以在共享内存的情况下,比如实现进程中各个线程之间的互斥和同步,因此无名信号量也被称作基于内存的信号量;命名信号量通常用于不共享内存的情况下,比如进程间通信。

同时,在创建信号量时,根据信号量取值的不同,POSIX信号量还可以分为:

下面是POSIX信号量函数接口:

信号量的函数都以sem_开头,线程中使用的基本信号函数有4个,他们都声明在头文件semaphore.h中,该头文件定义了用于信号量操作的sem_t类型:

【sem_init函数】:

该函数用于创建信号量,原型如下:

该函数初始化由sem指向的信号对象,设置它的共享选项,并给它一个初始的整数值。pshared控制信号量的类型,如果其值为0,就表示信号量是当前进程的局部信号量,否则信号量就可以在多个进程间共享,value为sem的初始值。

该函数调用成功返回0,失败返回-1。

【sem_destroy函数】:

该函数用于对用完的信号量进行清理,其原型如下:

成功返回0,失败返回-1。

【sem_wait函数】:

该函数用于以原子操作的方式将信号量的值减1。原子操作就是,如果两个线程企图同时给一个信号量加1或减1,它们之间不会互相干扰。其原型如下:

sem指向的对象是sem_init调用初始化的信号量。调用成功返回0,失败返回-1。

sem_trywait()则是sem_wait()的非阻塞版本,当条件不满足时(信号量为0时),该函数直接返回EAGAIN错误而不会阻塞等待。

sem_timedwait()功能与sem_wait()类似,只是在指定的abs_timeout时间内等待,超过时间则直接返回ETIMEDOUT错误。

【sem_post函数】:

该函数用于以原子操作的方式将信号量的值加1,其原型如下:

与sem_wait一样,sem指向的对象是由sem_init调用初始化的信号量。调用成功时返回0,失败返回-1。

【sem_getvalue函数】:

该函数返回当前信号量的值,通过restrict输出参数返回。如果当前信号量已经上锁(即同步对象不可用),那么返回值为0,或为负数,其绝对值就是等待该信号量解锁的线程数。

【实例1】:

【实例2】:

之所以称为命名信号量,是因为它有一个名字、一个用户ID、一个组ID和权限。这些是提供给不共享内存的那些进程使用命名信号量的接口。命名信号量的名字是一个遵守路径名构造规则的字符串。

【sem_open函数】:

该函数用于创建或打开一个命名信号量,其原型如下:

参数name是一个标识信号量的字符串。参数oflag用来确定是创建信号量还是连接已有的信号量。

oflag的参数可以为0,O_CREAT或O_EXCL:如果为0,表示打开一个已存在的信号量;如果为O_CREAT,表示如果信号量不存在就创建一个信号量,如果存在则打开被返回,此时mode和value都需要指定;如果为O_CREAT|O_EXCL,表示如果信号量存在则返回错误。

mode参数用于创建信号量时指定信号量的权限位,和open函数一样,包括:S_IRUSR、S_IWUSR、S_IRGRP、S_IWGRP、S_IROTH、S_IWOTH。

value表示创建信号量时,信号量的初始值。

【sem_close函数】:

该函数用于关闭命名信号量:

单个程序可以用sem_close函数关闭命名信号量,但是这样做并不能将信号量从系统中删除,因为命名信号量在单个程序执行之外是具有持久性的。当进程调用_exit、exit、exec或从main返回时,进程打开的命名信号量同样会被关闭。

【sem_unlink函数】:

sem_unlink函数用于在所有进程关闭了命名信号量之后,将信号量从系统中删除:

【信号量操作函数】:

与无名信号量一样,操作信号量的函数如下:

命名信号量是随内核持续的。当命名信号量创建后,即使当前没有进程打开某个信号量,它的值依然保持,直到内核重新自举或调用sem_unlink()删除该信号量。

无名信号量的持续性要根据信号量在内存中的位置确定:

很多时候信号量、互斥量和条件变量都可以在某种应用中使用,那这三者的差异有哪些呢?下面列出了这三者之间的差异:


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/256257.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-15
下一篇2023-04-15

发表评论

登录后才能评论

评论列表(0条)

    保存