对于粉体(浆料,粉料)的分散性,稳定性,亲和性以及比表面积的分析测试快速有效准确的测量手段。
1. 悬浮液体系颗粒比表面积
2. 粒子分散性、稳定性
3. 颗粒与介质之间亲和性
4. 粉体质量控制、分散工艺研究
试用范围如下:
1、颗粒:SiO2、SiC、ZnO、Al2O3、BaCO3、石墨烯、活性炭、炭黑等一百多种;
2、悬浮体系溶剂类型:水、乙醇、丁酮、甲苯等各类含H质子溶剂。
应用领域:
1)尖端制陶术:湿式制程、加工工艺改善, 分散性的质控和研发
2)纳米科技:纳米粒子表面的化学状态, 如: 吸附和脱附作用, 比表面积的变化 等
3)电子材料:浓稠状浆料和研磨液 (CMP) 的开发及品管
4)墨水:碳黑、颜料分散, 最适研磨条件, 表面亲和性及化学和物理状态
5)能源:电池, 太阳能板等的碳黑, 纳米碳管和浆料的分散, 粒子表面的化学和物理状态
6)制药:API湿润性、亲和性及吸水性的差异
7)其他: 全部的浓稠分散悬浊液体, 纳米纤维, 纳米碳等.
橄榄石型磷酸铁锂(LiFePO_4)以其高稳定性、价格低廉、环境友好、原材料丰富、寿命长等独特的优势,成为了最具有发展前景的锂离子电池正极材料。粘结剂是正极中重要的组成部分,影响着电极的电化学性能,本文采用一种环境友好、价格低廉的水性粘结剂PTFE,作为LiFePO_4/C电极制备过程中的粘结剂,来改善LiFePO_4/C正极的电化学性能。具体实验工作包括以下方面:(1)水性粘结剂PTFE作为LiFePO_4/C电极制备过程中的粘结剂,酒精作为添加溶剂,同时使用传统粘结剂PVDF和溶剂NMP作为对比实验。通过对涂布前的悬浮液进行的流变测试,发现在常温、剪切模式下,使用PTFE制备出来的混合浆料具备了更高的黏度系数,同样在温度模式下,PTFE也表现出了优良的黏度特性。从结构上看,两种粘结剂在红外光谱中1580 cm-1处表现出了不同的吸收峰。通过循环前后的极片SEM图可以发现,PTFE样品的表面颗粒分布较均匀,而PVDF样品循环后的表面颗粒有脱落现象。从电化学性能的体现上看,使用PTFE和PVDF作为粘结剂的电极在0.1 C,首周放电容量分别是161.1 mAh g~(-1)和150 mAh g~(-1),且由PTFE制备的电极在0.2 C,循环100周后的容量保持率高达97.5%,同时也表现出了良好的倍率性能(2 C,首周放电比容量107.9 mAh g~(-1),5 C,首周放电比容量88.6 mAh g~(-1))。另外,通过EIS测试可以看出,由PTFE制备出来的LFP/C电极具有较高的导电性能和离子传输速率。(2)针对水性粘结剂PTFE制备出来的电极,考虑到水分对电池性能的影响,开展了极片的优化处理实验,即将涂布均匀的电极在80℃烘箱中干燥6小时后分别转入80℃、100℃、120℃、150℃烘箱中真空干燥12和24小时,以考察不同温度与干燥时间对极片电化学性能的影响。通过对极片循环后做SEM测试来观察活性物质的变化,最后对各种条件下的极片进行红外测试,由于H2O的伸缩振动会在红外光谱3400cm-1的震动频率处产生较强的吸收峰,因此可以根据样品中此吸收峰的强度半定量的测定其中的水含量。最终实验结果表明在120℃、24小时条件下能够将极片中的H2O几乎完全除掉,同时在这个条件下对应的电化学性能也表现的最好。高分子材料的别称,是以高分子化合物为主要组分的有机材料。高分子化合物是指相对分子质量很大的化合物,其相对分子质量一般在5000以上,有的甚至高达几百万。高分子化合物由低分子化合物通过聚合反应获得。组成高分子化合物的低分子化合物称作单体。高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。这种高分子在加热时可以熔融,在适当的溶剂中可以溶解。高分子化合物中的原子连接成线状但带有较长分支时,也可以在加热时熔融,在适当溶剂中溶解。如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。体型高分子加热时不能熔融,只能变软;不能在任何溶剂中溶解,只能在某些溶剂中溶胀。用途
高分子聚合物的结构形貌分为微观结构形貌和宏观结构形貌。微观结构形貌指的是高分子聚合物在微观尺度上的聚集状态,如晶态,液晶态或无序态(液态),以及晶体尺寸、纳米尺度相分散的均匀程度等。高分子聚合物的的微观结构状态决定了其宏观上的力学、物理性质,并进而限定了其应用场合和范围。宏观结构形貌是指在宏观或亚微观尺度上高分子聚合物表面、断面的形态,以及所含微孔(缺陷)的分布状况。 观察固体聚合物表面、断面及内部的微相分离结构,微孔及缺欠的分布,晶体尺寸、性状及分布,以及纳米尺度相分散的均匀程度等形貌特点,将为我们改进聚合物的加工制备条件,共混组份的选择,材料性能的优化提供数据。
表征方法及原理
高分子聚合物结构形貌的表征方法
1.X射线衍射
利用X射线的广角或小角度衍射可以获取高分子聚合物的晶态和液晶态组织结构信息。有关内容参见高分子聚合物的晶态和高分子聚合物液晶态栏目。
2.扫描电镜(SEM)
扫描电镜用电子束扫描聚合物表面或断面,在阴极射线管上(CRT)产生被测物表面的影像。对导电性样品,可用导电胶将其粘在铜或铝的样品座上,直接观察测量的表面;对绝缘性样品需要事先对其表面喷镀导电层(金、银或炭)。目前HITATCH有一种台式扫描电镜可以对绝缘样品进行直接观测。
用SEM可以观察聚合物表面形态;聚合物多相体系填充体系表面的相分离尺寸及相分离图案形状;聚合物断面的断裂特征;纳米材料断面中纳米尺度分散相的尺寸及均匀程度等有关信息。
3.透射电镜(TEM)
透射电镜可以用来表征聚合物内部结构的形貌。将待测聚合物样品分别用悬浮液法,喷物法,超声波分散法等均匀分散到样品支撑膜表面制膜;或用超薄切片机将高分子聚合物的固态样样品切成50nm薄的试样。把制备好的试样置于透射电子显微镜的样品托架上,用TEM可观察样品的结构。利用TEM可以观测高分子聚合物的晶体结构,形状,结晶相的分布。高分辨率的透射电子显微镜可以观察到高分子聚合物晶的晶体缺陷。
4.原子力显微镜(AFM)
原子力显微镜使用微小探针扫描被测高分子聚合物的表面。当探针尖接近样品时,探针尖端受样品分子的范德华力推动产生变形。因分子种类、结构的不同,范德华力的大小也不同,探针在不同部位的变形量也随之变化,从而“观察”到聚合物表面的形貌。由于原子力显微镜探针对聚合物表面的扫描是三维扫描,因此可以得到高分子聚合物表面的三维形貌。
原子力显微镜可以观察聚合物表面的形貌,高分子链的构象,高分子链堆砌的有序情况和取向情况,纳米结构中相分离尺寸的大小和均匀程度,晶体结构、形状,结晶形成过程等信息。
5.扫描隧道显微镜(STM)
同原子力显微镜类似,扫描隧道显微镜也是利用微小探针对被测导电聚合物的表面进行扫描,当探针和导电聚合物的分子接近时,在外电场作用下,将在导电聚合物和探针之间,产生微弱的“隧道电流”。因此测量“隧道电流”的发生点在聚合物表面的分布情况,可以“观察”到导电聚合物表面的形貌信息。
扫描隧道显微镜可以获取高分子聚合物的表面形貌,高分子链的构象,高分子链堆砌的有序情况和取向情况,纳米结构中相分离尺寸的大小和均匀程度,晶体结构、形状等。和原子力显微镜相比,扫描隧道显微镜只能用于导电性的聚合物表面的观察。
6.偏光显微镜(PLM)
利用高分子液晶材料的光学性质特点,可以用偏光显微镜观测不同高分子液晶,由液晶的织构图象定性判断高分子液晶的类型。
7.光学显微镜
金相显微镜可以观测高分子聚合物表面的亚微观结构,确定高分子聚合物内和微小缺陷。体视光学显微镜通常被用于观测高分子聚合物体表面、断面的结构特征,为优化生产过程,进行损伤失效分析提供重要的信息。
使用体视显微镜时需要注意在取样时不得将进一步的损伤引入受观测的样品。使用金相显微镜时,受测样品需要首先在模具中固定,然后用树脂浇铸成圆柱形试样。圆柱的地面为受测面。受测面在打磨、抛光成镜面后放置于金相显微镜上。高分子聚合物亚微观结构形貌的清晰度取决于受测面抛光的质量。
所用仪器
x射线衍射仪
高分辨透射/扫描电子显微镜(TEM/SEM)
原子力显微镜
扫描隧道显微镜(STM)
偏光显微镜(PLM)
用途
高分子聚合物的结构形貌分为微观结构形貌和宏观结构形貌。微观结构形貌指的是高分子聚合物在微观尺度上的聚集状态,如晶态,液晶态或无序态(液态),以及晶体尺寸、纳米尺度相分散的均匀程度等。高分子聚合物的的微观结构状态决定了其宏观上的力学、物理性质,并进而限定了其应用场合和范围。宏观结构形貌是指在宏观或亚微观尺度上高分子聚合物表面、断面的形态,以及所含微孔(缺陷)的分布状况。 观察固体聚合物表面、断面及内部的微相分离结构,微孔及缺欠的分布,晶体尺寸、性状及分布,以及纳米尺度相分散的均匀程度等形貌特点,将为我们改进聚合物的加工制备条件,共混组份的选择,材料性能的优化提供数据。
表征方法及原理
高分子聚合物结构形貌的表征方法
1.X射线衍射
利用X射线的广角或小角度衍射可以获取高分子聚合物的晶态和液晶态组织结构信息。有关内容参见高分子聚合物的晶态和高分子聚合物液晶态栏目。
2.扫描电镜(SEM)
扫描电镜用电子束扫描聚合物表面或断面,在阴极射线管上(CRT)产生被测物表面的影像。对导电性样品,可用导电胶将其粘在铜或铝的样品座上,直接观察测量的表面;对绝缘性样品需要事先对其表面喷镀导电层(金、银或炭)。目前HITATCH有一种台式扫描电镜可以对绝缘样品进行直接观测。
用SEM可以观察聚合物表面形态;聚合物多相体系填充体系表面的相分离尺寸及相分离图案形状;聚合物断面的断裂特征;纳米材料断面中纳米尺度分散相的尺寸及均匀程度等有关信息。
3.透射电镜(TEM)
透射电镜可以用来表征聚合物内部结构的形貌。将待测聚合物样品分别用悬浮液法,喷物法,超声波分散法等均匀分散到样品支撑膜表面制膜;或用超薄切片机将高分子聚合物的固态样样品切成50nm薄的试样。把制备好的试样置于透射电子显微镜的样品托架上,用TEM可观察样品的结构。利用TEM可以观测高分子聚合物的晶体结构,形状,结晶相的分布。高分辨率的透射电子显微镜可以观察到高分子聚合物晶的晶体缺陷。
4.原子力显微镜(AFM)
原子力显微镜使用微小探针扫描被测高分子聚合物的表面。当探针尖接近样品时,探针尖端受样品分子的范德华力推动产生变形。因分子种类、结构的不同,范德华力的大小也不同,探针在不同部位的变形量也随之变化,从而“观察”到聚合物表面的形貌。由于原子力显微镜探针对聚合物表面的扫描是三维扫描,因此可以得到高分子聚合物表面的三维形貌。
原子力显微镜可以观察聚合物表面的形貌,高分子链的构象,高分子链堆砌的有序情况和取向情况,纳米结构中相分离尺寸的大小和均匀程度,晶体结构、形状,结晶形成过程等信息。
5.扫描隧道显微镜(STM)
同原子力显微镜类似,扫描隧道显微镜也是利用微小探针对被测导电聚合物的表面进行扫描,当探针和导电聚合物的分子接近时,在外电场作用下,将在导电聚合物和探针之间,产生微弱的“隧道电流”。因此测量“隧道电流”的发生点在聚合物表面的分布情况,可以“观察”到导电聚合物表面的形貌信息。
扫描隧道显微镜可以获取高分子聚合物的表面形貌,高分子链的构象,高分子链堆砌的有序情况和取向情况,纳米结构中相分离尺寸的大小和均匀程度,晶体结构、形状等。和原子力显微镜相比,扫描隧道显微镜只能用于导电性的聚合物表面的观察。
6.偏光显微镜(PLM)
利用高分子液晶材料的光学性质特点,可以用偏光显微镜观测不同高分子液晶,由液晶的织构图象定性判断高分子液晶的类型。
7.光学显微镜
金相显微镜可以观测高分子聚合物表面的亚微观结构,确定高分子聚合物内和微小缺陷。体视光学显微镜通常被用于观测高分子聚合物体表面、断面的结构特征,为优化生产过程,进行损伤失效分析提供重要的信息。
使用体视显微镜时需要注意在取样时不得将进一步的损伤引入受观测的样品。使用金相显微镜时,受测样品需要首先在模具中固定,然后用树脂浇铸成圆柱形试样。圆柱的地面为受测面。受测面在打磨、抛光成镜面后放置于金相显微镜上。高分子聚合物亚微观结构形貌的清晰度取决于受测面抛光的质量。
所用仪器
x射线衍射仪
高分辨透射/扫描电子显微镜(TEM/SEM)
原子力显微镜
扫描隧道显微镜(STM)
偏光显微镜(PLM)
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)