采用OLS的回归分析方法存在几方面的限制:
(1)不允许有多个因变量或输出变量
(2)中间变量不能包含在与预测因子一样的单一模型中
(3)预测因子假设为没有测量误差
(4)预测因子间的多重共线性会妨碍结果解释
(5)结构方程模型不受这些方面的限制
SEM的优点:
(1)SEM程序同时提供总体模型检验和独立参数估计检验;
(2)回归系数,均值和方差同时被比较,即使多个组间交叉;
(3)验证性因子分析模型能净化误差,使得潜变量间的关联估计较少地被测量误差污染;
(4)拟合非标准模型的能力,包括灵活处理追踪数据,带自相关误差结构的数据库(时间序列分析),和带非正态分布变量和缺失数据的数据库。
构方程模型最为显著的两个特点是:
(1)评价多维的和相互关联的关系;
(2)能够发现这些关系中没有察觉到的概念关系,而且能够在评价的过程中解释测量误差。
1、最小二乘法的典型应用是求解一套x和y的成对数据对应的曲线(或者直线)方程。
其思想是:设y和x之间的关系可以用一个公式在表示,但其系数为待定系数。然后,将各个点的实测数据与计算求得的数据相减,得到“误差”或者不符值(有正有负,但其平方都是正的),将这些不符值的平方相加,得到总的“误差”。通过调整公式中的各个系数,使得误差平方和最小,那么就确定了y和x之间的方程的最好结果。求解最小二乘问题的过程中没有提及概率问题。
2、而极大似然估计值,是用于概率领域的一种方法,和最小二乘法是两个领域的。这种方法是应用求极大值的方法,让某一个公式求导值为0,再根据情况判断该极值是否是合乎要求。极大似然估计法可以用于正态分布中 μ, σ2的极大似然估计。极大似然估计法就是要选取类似的数值作为参数的估计值,使所选取的样本在被选的总体中出现的可能性为最大。
1、放大率:
与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制放大率的。如果需要更高的放大率,只需要扫描更小的一块面积就可以了。放大率由屏幕/照片面积除以扫描面积得到。
所以,SEM中,透镜与放大率无关。
2、场深:
在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。
3、作用体积:
电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。
4、工作距离:
工作距离指从物镜到样品最高点的垂直距离。
如果增加工作距离,可以在其他条件不变的情况下获得更大的场深。如果减少工作距离,则可以在其他条件不变的情况下获得更高的分辨率。通常使用的工作距离在5毫米到10毫米之间。
5、成象:
次级电子和背散射电子可以用于成象,但后者不如前者,所以通常使用次级电子。
6、表面分析:
欧革电子、特征X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。但由于电子束只能穿透样品表面很浅的一层(参见作用体积),所以只能用于表面分析。
表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在但耗时太长。
观察方法:
如果图像是规则的(具螺旋对称的活体高分子物质或结晶),则将电镜像放在光衍射计上可容易地观察图像的平行周期性。
尤其用光过滤法,即只留衍射像上有周期性的衍射斑,将其他部分遮蔽使重新衍射,则会得到背景干扰少的鲜明图像。
扩展资料:
SEM扫描电镜图的分析方法:
从干扰严重的电镜照片中找出真实图像的方法。在电镜照片中,有时因为背景干扰严重,只用肉眼观察不能判断出目的物的图像。
图像与其衍射像之间存在着数学的傅立叶变换关系,所以将电镜像用光度计扫描,使各点的浓淡数值化,将之进行傅立叶变换,便可求出衍射像〔衍射斑的强度(振幅的2乘)和其相位〕。
将其相位与从电子衍射或X射线衍射强度所得的振幅组合起来进行傅立叶变换,则会得到更鲜明的图像。此法对属于活体膜之一的紫膜等一些由二维结晶所成的材料特别适用。
扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。
参考资料:百度百科-扫描电子显微镜
一、含义不同
mean表示都是平均数。
SEM是standard error of mean是平均数的抽样误差,反应平均数的抽样准确性。
SD全称standard deviation标准差,又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。
二、用法不同
SEM计估计值的准确性无法度量,但可以用统计方法来测量。
测试的误差来源包括系统误差和采样误差,这些误差很容易克服,采样误差是由许多无法控制的内部和外部因素引起的,这些因素都是偶然的,即使在测试中非常小心也很难消除,但可以通过增加重复次数来减少。
小样本(n≤30)取平均值±标准差,大样本(n>30)取平均值±标准差。
三、类型不同
标准差是方差的算术平方根。标准差可以反映数据集的离散程度。如果平均值相同,则标准差可能不相同。
标准误差是用样品的标准偏差除以样品容量的平方根来计算的,标准误差受样本量影响较大,样本量越大,标准误差越小,抽样误差越小,说明样本能够更好地代表种群。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)