二者之间结构差异主要体现在样品在电子束光路中的位置不同。透射电镜(TEM)的样品在电子束中间,电子源在样品上方发射电子,经过聚光镜,然后穿透样品后,有后续的电磁透镜继续放大电子光束,最后投影在荧光屏幕上扫描电镜(SEM)的样品在电子束末端,电子源在样品上方发射的电子束,经过几级电磁透镜缩小,到达样品。当然后续的信号探测处理系统的结构也会不同,但从基本物理原理上讲没什么实质性差别。
相同之处:都是电真空设备,使用绝大部分部件原理相同,例如电子枪,磁透镜,各种控制原理,消象散,合轴等等。
2、SEM和TEM基本工作原理:
透射电镜(TEM):电子束在穿过样品时,会和样品中的原子发生散射,样品上某一点同时穿过的电子方向是不同,这样品上的这一点在物镜1-2倍焦距之间,这些电子通过过物镜放大后重新汇聚,形成该点一个放大的实像,这个和凸透镜成像原理相同。这里边有个反差形成机制理论比较深就不讲,但可以这么想象,如果样品内部是绝对均匀的物质,没有晶界,没有原子晶格结构,那么放大的图像也不会有任何反差,事实上这种物质不存在,所以才会有这种牛逼仪器存在的理由。经过物镜放大的像进一步经过几级中间磁透镜的放大(具体需要几级基本上是由电子束亮度决定的,如果亮度无限大,最终由阿贝瑞利的光学仪器分辨率公式决定),最后投影在荧光屏上成像。由于透射电镜物镜焦距很短,也因此具有很小的像差系数,所以透射电镜具有非常高的空间分辨率,0.1-0.2nm,但景深比较小,对样品表面形貌不敏感,主要观察样品内部结构。
扫描电镜:电子束到达样品,激发样品中的二次电子,二次电子被探测器接收,通过信号处理并调制显示器上一个像素发光,由于电子束斑直径是纳米级别,而显示器的像素是100微米以上,这个100微米以上像素所发出的光,就代表样品上被电子束激发的区域所发出的光。实现样品上这个物点的放大。如果让电子束在样品的一定区域做光栅扫描,并且从几何排列上——对应调制显示器的像素的亮度,便实现这个样品区域的放大成像。具体图像反差形成机制不讲。由于扫描电镜所观察的样品表面很粗糙,一般要求较大工作距离,这就要求扫描电镜物镜的焦距比较长,相应的相差系数较大,造成最小束斑尺寸下的亮度限制,系统的空间分辨率—般比透射电镜低得多1-3纳米。但因为物镜焦距较长,图像景深比透射电镜高的多,主要用于样品表面形貌的观察,无法从表面揭示内部结构,除非破坏样品,例如聚焦离子束电子束扫描电镜FIB-SEM,可以层层观察内部结构。
透射电镜和扫描电镜二者成像原理上根本不同。透射电镜成像轰击在荧光屏上的电子是那些穿过样品的电子束中的电子,而扫描电镜成像的二次电子信号脉冲只作为传统CTR显示器上调制CRT三极电子枪栅极的信号而已。透射电镜我们可以说是看到了电子光成像,而扫描电镜根本无法用电子光路成像来想象。
铄思百检测SEM和TEM样品制备要求:
TEM测试对样品有以下几点要求:
① 粉末、液体样品均可,固体样品太大了的需要离子减薄、双喷、FIB、切片制样。
② 样品必须很薄,使电子束能够穿透,一般厚度为100~200nm左右
③ 样品需置于直径为2~3mm的铜制载网上,网上附有支持膜
④ 样品应有足够的强度和稳定性,在电子线照射下不至于损坏或发生变化
⑤ 样品及其周围应非常清洁,以免污染。
SEM测试对样品有以下几点要求:
① 粉末样>0.02g;块状样和生物样,直径小于26mm,高度小于15mm
② 样品中不得含有水分;
③ 导电性差及磁性样品为保证拍摄效果,建议喷金
免责声明:部分文章整合自网络,因内容庞杂无法联系到全部作者,如有侵权,请联系删除,我们会在第一时间予以答复,万分感谢。
SEM就是观察表面形貌的一种方法。对于块状材料,如果观察断口形貌,则要把样品打断,将断口在丙酮中超声处理,去除碎渣,再喷碳或金。
对于抛光样品,需要将抛光面腐蚀。腐蚀剂根据不同材料选择。
扫描电子显微镜(SEM)是1965年以后才迅速发展起来的新型电子仪器。其主要特点可归纳为:①仪器分辨率高;②仪器的放大倍数范围大,一般可达15~180000倍,并在此范围内连续可调;③图像景深大,富有立体感;④样品制备简单,可不破坏样品;⑤在SEM上装上必要的专用附件——能谱仪(EDX),以实现一机多用,在观察形貌像的同时,还可对样品的微区进行成分分析。
一、扫描电子显微镜(SEM)的基本结构及原理
扫描电镜基本上是由电子光学系统、信号接收处理显示系统、供电系统、真空系统等四部分组成。图13-2-1是它的前两部分结构原理方框图。电子光学部分只有起聚焦作用的汇聚透镜,它们的作用是用信号收受处理显示系统来完成的。
图13-2-1 SEM的基本结构示意图
在扫描电镜中,电子枪发射出来的电子束,经3个电磁透镜聚焦,成直径为20 μm~25 Å的电子束。置于末级透镜上部的扫描线圈能使电子束在试样表面上做光栅状扫描。试样在电子束作用下,激发出各种信号,信号的强度取决于试样表面的形貌、受激区域的成分和晶体取向。试样附近的探测器把激发出的电子信号接受下来,经信号处理放大系统后,输送到阴极射线管(显像管)的栅极以调制显像管的亮度。由于显像管中的电子束和镜筒中的电子束是同步扫描的,显像管亮度是由试样激发出的电子信号强度来调制的,由试样表面任一点所收集来的信号强度与显像管屏上相应点亮度一一对应,因此试样状态不同,相应的亮度也必然不同。由此,得到的像一定是试样形貌的反映。若在试样斜上方安置的波谱仪和能谱仪,收集特征X射线的波长和能量,则可做成分分析。
值得注意的是,入射电子束在试样表面上是逐点扫描的,像是逐点记录的,因此试样各点所激发出来的各种信号都可选录出来,并可同时在相邻的几个显像管上或X—Y记录仪上显示出来,这给试样综合分析带来极大的方便。
二、高能电子束与样品的相互作用
并从样品中激发出各种信息。对于宝石工作者,最常用的是二次电子、背散射电子和特征X射线。上述信息产生的机理各异,采用不同的检测器,选择性地接收某一信息就能对样品进行成分分析(特征X射线)或形貌观察(二次电子和背散射电子)。这些信息主要有以下的特征:
1.二次电子(SE)
从距样品表面100 Å左右的深度范围内激发的低能量电子(一般为0~50 eV左右)发生非弹性碰撞。二次电子像是SEM中应用最广、分辨率最高的一种图像,成像原理亦有一定的代表性。高能入射电子束(一般为10~35 keV)由扫描线圈磁场的控制,在样品表面上按一定的时间、空间顺序作光栅式扫描,而从试样中激发出二次电子。被激发出的二次电子经二次电子收集极、闪烁体、光导管、光电倍增管以及视频放大器,放大成足够强的电信号,用以调制显像管的亮度。由于入射电子束在样品上的扫描和显像管的电子束在荧光屏上的扫描用同一个扫描发生器调制,这就保证了样品上任一物点与荧光屏上任一“像点”在时间与空间上一一对应;同时,二次电子激发量随试样表面凹凸程度的变化而变化,所以,显像管荧光屏上显现的是一幅明暗程度不同的反映样品表面形貌的二次电子像。由于二次电子具有低的能量,为了收集到足够强的信息,二次电子检测器的收集必须处于正电位(一般为+250 V ),在这个正电位的作用下,试样表面向各个方向发射的二次电子都被拉向收集极(图13-2-2a),这就使二次电子像成为无影像,观察起来更真实、更直观、更有立体感。
2.背散射电子(BE)
从距样品表面0.1~1 μm的深度范围内散射回来的入射电子,其能量近似等于原入射电子的能量发生弹性碰撞。背散射电子像的成像过程几乎与二次电子像相同,只不过是采用不同的探测器接收不同的信息而已,如图13-2-2所示。
图13-2-2 二次电子图像和背散射电子图像的照明效果
(据S.Kimoto,1972)
a:二次电子检测方法;a′:二次电子图像的照明效果;b:背散射电子检测方法;b′:背散射电子图像的照明效果
3.特征X射线
样品中被激发了的元素特征X射线释放出来(发射深度在0.5~5μm范围内)。而要对样品进行微区的元素的成分分析,则需借助于被激发的特征X射线。这就是通常所谓的“电子探针分析”,又通常把测定特征X射线波长的方法叫波长色散法(WDS);测定特征X射线能量的方法叫能量色散法(EDS)。扫描电子显微镜除了可运用于宝玉石的表面形貌外,它经常带能谱(EDS)做成分分析。EDS主要是由高效率的锂漂移硅半导体探测器、放大器、多道脉冲高度分析器和记录系统组成。样品被激发的特征X射线,入射至锂漂移硅半导体探测器中,使之产生电子—空穴对,然后转换成电流脉冲,放大,经多道脉冲高度分析器按能量高低将这些脉冲分离,由这些脉冲所处的能量位置,可知试样所含的元素的种类,由具有相应能量的脉冲数量可知该元素的相对含量。利用此方法很容易确定宝石矿物的成分。
扫描电镜若带有能谱(EDS)则不但可以不破坏样品可运用于做宝玉石形貌像,而且还能快速做成分分析(如图13-2-3,廖尚仪,2001)。因此它是鉴定和区别相似宝玉石矿物的好方法,如红色的镁铝榴石,红宝石、红尖晶石、红碧玺等,因为它们的成分不同,其能谱(EDS)图也就有较大的区别。波谱(WDS)定量分析比能谱(EDS)定量分析精确,但EDS分析速度快。
图13-2-3 蓝色钾-钠闪石的能谱图
三、SEM的微形貌观察
1.样品制备
如果选用粉状样,需要事先选择好试样台。如果是块状样,最大直径一般不超过15mm。如果单为观察形貌像,直径稍大一些(39mm)仍可以使用,但试样必须导电。如果是非导电体试样,必须在试样表面覆盖一层约200 Å厚度的碳或150 Å的金。
2.SEM形貌像的获得
图13-2-4 扫描电子显微镜下石英(a)和蓝色闪石玉(b)的二次电子像
观察试样的形貌,常用二次电子像或背散射电子像。图13-2-4是石英(a)和蓝色闪石玉(钾-钠闪石b)的二次电子像。同时由于二次电子像具有较高的分辨率和较高的放大倍数,因此,比背散射电子像更为常用。而成分分析则常采用背散射电子像。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)