无铅压电陶瓷的主要体系

无铅压电陶瓷的主要体系,第1张

根据不同的依据,目前各种非铅系压电铁电陶瓷体系划分略有不同。综合各种分类做如下归纳。 钙钛矿结构名字来源于CaTiO3这种矿物的结构,其化学通式为ABO3,许多重要的压电陶瓷(包括铅系和非铅系的陶瓷)都是以钙钛矿结构存在。

主要包括钛酸钡( BaTiO3 )基(BT基)无铅压电陶瓷、钛酸铋钠[(Bi0. 5Na0. 5 )TiO3]基(BNT基)无铅压电陶瓷和碱金属铌酸钾钠[(K,Na)NbO3]基(KNN基)无铅压电陶瓷。 此类晶体结构与钙钛矿结构类似(故在体系划分时有时并不单独列出)。

主要包括以铌酸锶钡(Sr1-xBaxNb2O6)系和铌酸钡钠(NaBa2Nb5O15)系为代表的无铅压电陶瓷。 此类压电陶瓷为具有层状结构的化合物,是由铋层状结构化合物层和钙钛矿结构的晶格层穿插交叠而成。

主要包括以钛酸铋(Bi4Ti3O12)、钛酸铋钙(CaBi4Ti4O15)和钛酸铋锶(SrBi4Ti4O15)为代表的铋层状结构无铅压电陶瓷。

1、中高温发光陶瓷釉研究

发光陶瓷,是长余辉发光材料在陶瓷行业的应用.本文利用溶胶—凝胶法制备出了发光性能优异的Sr2MgSi2O7:Eu2+,Dy3+新型长余辉发光材料,继而将其成功应用于1050℃-1150℃中高温釉料,首次制备出了Sr2MgSi2O7:Eu2+,Dy3+中高温发光陶瓷釉.本文系统研究了溶胶—凝胶法制备Sr2MgSi2O7:Eu2+,Dy3+发光体的基本工艺讨论了Sr2MgSi2O7:Eu2+,Dy3+发光材料的耐水性能、化学稳定性和耐高温性能讨论了Sr2MgSi2O7:Eu2+,Dy3+发光材料的发光性能,并且初步探讨了其发光机理在发光材料研究的基础上,进而研究了Sr2MgSi2O7:Eu2+,Dy3+发光陶瓷釉的制备工艺研究了发光釉的...................共55页

2、超平滑陶瓷釉研究

以钾长石、石英、高岭土、方解石、白云石等为原料,采用常规烧成方法制备了超平滑釉,探讨了釉浆性质、釉料高温性质、釉层的显微结构等对釉面粗糙度的影响。 釉浆性质如釉料组成、粒度、浓度、流动性等不仅是影响施釉过程的关键因素,同时也对烧后釉面质量有较大的影响。随釉料中熔块含量的增加,烧后釉面粗糙度逐渐降低,光泽度逐渐增加。当熔块含量达60wt%以上时,釉面粗糙度(Ra)小于10nm含量增加至80wt%以上时,釉面光泽度大于110%。随釉浆粒度的减小,釉面粗糙度逐渐降低,D90介于4.0~7.5μm之间时,釉面粗糙度小于10nm。生坯施釉时釉浆浓度以1.5~1.6g·cm-3为宜,素坯施釉时釉浆浓度应控制在1.6~1.7g·cm-3,可以获得釉面质量较好的试样...................共47页

3、陶瓷釉面抗菌自洁薄膜制备工艺与性能研究

对陶瓷釉面抗菌自洁薄膜的制备工艺和性能进行了研究。文章使用胶溶法制备稳定的载银纳米二氧化钛水溶胶,以溶胶的Zeta电位、透过率及粒径分布为主要表征指标,着重考察溶胶pH值、胶体配制浓度、胶溶剂浓度、制胶温度及载银改性对其分散稳定性的影响,优化了制备工艺条件,并对其在陶瓷釉面基底上的镀膜效果以SEM和EDS进行了表征和测试。研究结果表明:当制胶水浴T=40~80℃,溶胶pH=1.2~2.0时,使用质量分数为5﹪的稀硝酸或质量分数为3﹪的稀盐酸胶溶按0.05~0.3mol/L配制的正钛酸前驱体,均能够制备出较稳定的纳米二氧化钛水溶胶;但使用硝酸胶溶...................共49页

4、低锆乳浊釉与其结构的研究

硅酸锆是陶瓷釉中常用的乳浊剂,但其来源有限、价格昂贵、过多使用还会造成釉面缺陷及使产品产生辐射等不足,目前研制及使用少锆和不含锆的乳浊釉已是国内外陶瓷界的一个趋势。本文旨在少用或不用硅酸锆,通过调整磷灰石的添加量,制备了低锆或无锆的P-Zr、P-Zn及P-Li-Zn3个系列的复合乳浊釉。采用XRD、SEM等现代测试技术分析了样品的性能及微观结构,探讨了釉的乳浊机理及坯釉结合机理。坯体采用固体废弃物武汉市东湖淤泥、粉煤灰和硅灰石为原料,经1100℃烧成后,坯体呈玫瑰棕色,吸水率为7.24%、气孔率为15.82%、体积密度为2.19g.cm-3。热膨胀系数为4.67×10-6/℃,酸度系数为0.75。坯体的主晶相为针棒状的蓝晶石晶体(Al2SiO5)、颗粒状的石英晶体(SiO2)和块...................共52页

5、新型纳米金属光泽釉研究

通过湿化学方法首先合成金属光泽剂CuMn2O4粉体,添加到基础釉中,制备纳米金属光泽釉。通过TG—DTA、XRD、FE—SEM、EPMA现代测试技术研究了CuMn2O4的合成工艺及金属光泽釉的制备工艺,探讨了金属光泽釉的呈色机理。 以CuSO4·5H2O、MnSO4·H2O为原料,采用共沉淀法合成CuMn2O4粉体的最佳工艺参数为:pH=10,反应温度为45℃,反应物浓度0.1g/mL,热处理温度850℃,样品主晶相为正CuMn2O4,属立方晶系,平均晶粒尺寸约120nm。研究表明,热处理温度的高低直接影响产物的结晶状况,随热处理温度的升高,CuMn2O4粉体的平均结晶度呈现先增大后减小的趋势,热处理温度为800℃时平均结晶度最大,为89.15%,晶粒尺寸约100nm。热处理温度850℃时平均结晶度为83.33%,晶...................共43页

6、陶瓷坯釉料配方优化与显微结构定量分析

针对实际的陶瓷生产工艺中的制约陶瓷生产质量的两点关键性技术问题,从理论上提出相应的改进方案并在技术实现上加以改进,具体方案详述如下:第一,针对配方优化方面,利用最优化算法对陶瓷配方进行优化设计,将繁琐的传统手工计算交由计算机来处理,缩短产品设计周期,提高生产效率。在分析数值优化算法的基础上,针对陶瓷配方优化方法的特点,分别采用复合形法和遗传算法对陶瓷配方进行设计。通过两种算法的结果对比分析,发现标准遗传算法在计算后的结果不理想,与复合形法的结果相比还有一定的差距,因此重点对标准遗传算法进行了优化和...................共65页

7、利用花岗石废料制备陶瓷釉料研究

石材从原料加工到成品,会产生大量的废弃物。花岗石在开采和切割加工过程中,同样会产生大量碎片和切割粉屑并作为废料丢弃,造成资源浪费。目前,艺术陶瓷和琉璃瓦所用的釉料,都是由多种天然原料(如石英、长石、石灰石等)加工?而成。由于釉料的矿源日益减少,...................共40页

8、超低温釉制备与烧成机理的研究

设计了釉料配方和添加剂,成功制备出烧成温度低于800℃的优质釉面;用DSC-TG、XRD、SEM、拉曼光谱对样品的结构、微观形貌、形成过程等进行了表征,测试了釉面的物理性能,研究了超低温釉的低温烧成机理和最佳烧成制度,讨论了ZnO、Na2B4O7对釉料烧成温度的影响以及烧成制度对釉面质量的影响。结果表明,釉料配方中,B2O3:SiO2为1.367:1(质量比),ZnO含量为11.74%,釉料烧成温度在780℃左右,烧成后釉面平整光滑,光泽度高,透明性好,有较强的耐热性,胚釉断面有结合层生成。与原配方相比,始熔温度降低了500℃左右;熔融过程温宽增加

9、超细无机复合抗菌搪瓷的制备研究

对搪瓷及抗菌搪瓷的发展现状作了简要介绍对抗菌剂的分类、制备方法和抗菌机理以及抗菌剂引入搪瓷方法进行了阐述并对抗菌制品的检测方法作了简要介绍。研究确定了超细无机复合抗菌粉体制备的适宜工艺条件,即在体系总液量一定,原料配比一定的情况下,搅拌速度为750r/min,分散剂用量为0.13g(1.0%),反应时间为40min,反应温度为98℃,煅烧过程中温度为750℃,时间为3 h。根据适宜工艺条件制得的超细抗菌粉体用激光粒度仪测得平均粒径为230nm左右,粒径均匀,分布较窄。抗菌粉体为非溶出性抗菌剂,此抗菌剂在浓度为100mg/L时,30min内对大肠杆菌...................共55页

10、低温快烧结晶釉的研制

以缩短传统结晶釉的烧成周期、减少生产成本为主要目的,从配方、工艺方面着手,以氧化锌和二氧化硅为主要原料,通过添加萤石降低釉的粘度和用金红石型TiO2作成核剂研制出符合现代建筑陶瓷产品低温快烧要求的硅酸锌系结晶釉。通过不断调整釉料配方和工艺,同时引入品种,获得了制备结晶效果好、烧成温度低、烧成周期短的结晶釉的工艺方法。利用X射线衍射分析和偏光显微镜研究和分析了结晶釉的组成和显微结构,并确定本实验中釉中析出的主晶相为Zn2SiO4晶体。探讨了快烧结晶釉的析晶机理,分析了各组...................共50页

11、低温烧成乳浊釉的研究及乳浊机理探讨

釉料配方中采用价格低廉的磷灰石取代或部分取代锆英石作为乳浊剂制备磷乳浊釉和磷锆复合乳浊釉。黄河泥沙质陶瓷坯体采用注浆成型法制备,1080~1180℃烧成。测试了样品的吸水率、气孔率、体积密度。采用现代测试手段XRD、SEM、EPMA对样品的晶相组成和微观结构进行了分析。结果表明,烧后坯体的主晶相为柱状的莫来石(A16Si2013)和颗粒状的石英晶体(Si02)。黄河泥沙质陶瓷坯体烧成后呈色较深,本文成功研制了一种可以遮盖坯体颜色的低温乳浊釉,研究了其最佳配方组成及合理的制备工艺,测试了典型样品的釉面的白度、显微硬度等性能。分析了釉层结构和性能,并探讨了釉层的乳浊机理和坯体与釉层的结合机理。其中较佳磷釉的...................共65页

12、多孔釉膜的制备及性能研究

以石英砂、长石、石灰石、膨润土、硼砂和工业级氧化铝粉为原料,以可溶性淀粉为造孔剂,采用喷涂工艺涂膜,在高温下烧结,可得到表面光滑、机械强度高、孔径分布均匀的多孔釉膜。膜层厚度受喷涂时间、釉浆浓度的影响,膜孔径的大小受造孔剂种类、添加量、釉膜烧结温度、保温时间的影响。通过调节这些因素,即可制备出孔径可控的多孔釉膜。造孔剂的最大用量不能超过15%,否则造成釉膜表面出现大面积缺陷。用扫描电子...................共40页

13、防污功能陶瓷材料的制备与性能研究

研究功能陶瓷对水的表面张力、接触角、溶解氧、乳液稳定性、植物种子发芽等的影响,测试了陶瓷表面油滴在水中的运动规律。研究结果表明:将稀土复合磷酸盐无机抗菌材料添加到陶瓷釉料中制备的陶瓷具有较好的防污功能这种陶瓷与水接触后可使水分子活化、降低水的表面张力、减小水在陶瓷表面的接触角、提高乳液的稳定性,使得陶瓷表面具有防油污功能经防污功能陶瓷处理后的水,还可...................共46页

14、高白釉的研制及性能研究

以锆英石为乳浊剂,研制出烧成温度大于 1300℃。白度大于 80,符合国标的高温乳浊白釉。并借助于 OM、SEM、XRD等手段。系统研究了该釉的工艺条件和形成机理。结果表明:锆英石最佳引入量为9%~13%,SiO2:Al2O3值为7.32:1;釉层中主要晶体为硅酸锆和石英;影响釉面效果的主要因素有釉料组成、粒度、乳浊剂和熔剂的引入量、SiO2:Al2O3的比值、烧成制度等。...................共50页

15、一次烧成釉面砖坯釉配方设计及坯釉性能的研究

系统分析了一次烧成釉面砖坯釉料配方的特点,通过合理选择原料,引入适合低温快烧的透辉石、硅灰石、瓷石等唐山本地原料,在配方中调整Si2O、Al2O3的含量以及他们与K2O、Na2O之间的数量关系,确定了一次烧成釉面砖坯釉配方的化学组成范围及最佳配方,在烧成中采用“阶梯式升温”与快、缓升温结合,升温过程中进行两次保温,对气体排出完全,避免出现针孔,保证釉料充分熔融,形成质量稳定的釉面起到了促进作用。通过对坯体配方热重曲线、差热曲线、胀缩曲线的测试分析,坯釉膨胀系数的测定,釉熔融温度等性能的测定,可看出坯体的烧失量小

1.本发明涉及新材料领域,具体为一种导电性较强的高性能陶瓷材料及其制备方法。

背景技术:

2.导电陶瓷材料是指陶瓷材料中具备离子导电、电子/空穴导电的一种新型功能的材料,在能源、冶金、换班、电化学器件等各个领域有着广阔的应用前景。导电陶瓷具有抗氧化、抗腐蚀、抗辐射、耐高温和长寿命等特点,可以用于固体燃料电池电极、气敏元件、高温加热、固体电阻器、氧化还原材料和高临界温度超导材料等方面。

3.提高碳化硅陶瓷材料的导电性,不仅可以解决应用受限的问题,而且导电性达到一定程度后可以满足电火花加工条件,利用电火花加工可以快速精确的完成碳化硅陶瓷材料后期的加工成型。如果陶瓷材料不仅具备导电性能,还具备其他优异的性能,更能够拓宽陶瓷材料的适用范围。由此,研究导电性较强的高性能陶瓷材料是非常有发展前景的。因此,制备一种保温隔热性能优异的新型陶瓷材料是非常有必要的。

技术实现要素:

4.本发明的目的在于提供一种导电性较强的高性能陶瓷材料,以解决上述背景技术中提出的问题。

5.为了解决上述技术问题,本发明第一方面提供如下技术方案:一种导电性较强的高性能陶瓷材料,其特征在于,包括以下重量份数的原料:

6.20~30份氧化锆、80~120份碳化硅、8~16份氧化铝、10~25份锌粉,2~4份氧化钇、20~40份烧结助剂、30~60份聚乙烯醇。

7.优选的,所述烧结助剂为使用聚乙烯醇包裹氧化铝和氧化钇。

8.本发明第二方面提供:一种导电性较强的高性能陶瓷材料的制备方法,其特征在于:

9.制备导电性较强的高性能陶瓷材料的工艺流程为:

10.球磨陶瓷原料,特殊的高温煅烧,二次球磨,制备烧结助剂,液相烧结,降温制得成品。

11.优选的,包括以下具体步骤:

12.(1)将氧化锆与碳化硅按一定比例混合,形成混料;

13.(2)向混料中加入与混料体积比为1:1的无水乙醇,制成湿料,将湿料置于陶瓷球磨机中进行研磨,研磨时间为1.5~3h;

14.(3)将混料置于焙烧炉中进行第一次高温煅烧;

15.(4)调节温度,通入氮气,进行第二次高温煅烧;

16.(5)保持温度不变,向混料中通入脉冲电流进行第三次高温煅烧,电流大小为1ka,周期为0.08s;

17.(6)高温煅烧后加入锌粉,将混料置于陶瓷球磨机中,进行二次球磨;

18.(7)将氧化铝和氧化钇浸于三倍体积的聚乙烯醇中,制得烧结助剂;

19.(8)向二次球磨后的混料中加入烧结助剂,进行液相烧结,烧结温度保持在930~1100℃;

20.(9)烧结完成后进行梯度温度速降式降温,制得成品。

21.优选的,上述步骤(1)中:氧化锆与碳化硅的质量比为1:4。

22.优选的,上述步骤(3)中:第一次高温煅烧温度为1700~1900℃。

23.优选的,上述步骤(4)中:第二次高温煅烧温度为2100~2300℃。

24.优选的,上述步骤(6)中:加入锌粉与混料体积比为1:8。

25.优选的,上述步骤(7)中:氧化铝和氧化钇质量比为4:1。

26.优选的,上述步骤(9)中:降温时,降温速度为200℃/h,每隔1h进行一次保温,保温时间为0.5h。

27.与现有技术相比,本发明所达到的有益效果是:

28.对于原料的预处理使用特殊的多次煅烧方式;首先原料碳化硅、二氧化硅、氧化锆球磨后进行第一次高温煅烧,提高粉体活性,降低粉体的烧结温度;然后升高温度,在氮气氛围下进行第二次煅烧,部分碳化硅与二氧化硅和氮气反应,转变为氮化硅,并生成碳;最后再在颗粒间直接通入脉冲电流进行第三次煅烧,氧化锆与碳反应生成碳化锆,经过三次煅烧后陶瓷材料的高阻成分为颗粒大小不一的碳化硅、氧化锆、氮化硅、碳化锆,第三次煅烧后加入锌粉,进行二次球磨,球磨后进行液相烧结,烧结时锌粉被氧化成四针状的氧化锌,穿插在颗粒大小不一的陶瓷材料中,烧结后后,使四针状氧化锌在陶瓷材料中均匀分布形成电渗流网络,使陶瓷材料不仅获得导电性能,还获得抗氧化、抗冷热冲击的高性能。

29.高温煅烧后使用聚乙烯醇包裹氧化铝和氧化钇作为烧结助剂,进行造粒和液相烧结,聚乙烯醇在造粒时作为粘结剂,成型时直接将氧化铝和氧化钇释放,成型和烧结时进行,减少工艺流程,使陶瓷材料得到交流导电性能;液相烧结过程中会形成少量的氧化物,在剩余的碳化硅晶粒间形成一层薄膜,将烧结时间延长,使材料中的氧和铝的含量减少,降低薄膜的厚度,随着四针状氧化锌生成,穿插在薄膜中,在液相中的长时间烧结导致碳化硅晶粒先溶解,再沉淀在四针状氧化锌晶粒表面,碳化硅变成由铝和氧掺杂的复合相,具备导电能力,与氧化锌共同形成交叉的三维导电网络,导电性能增强,且薄膜越薄导电性越强。

30.烧结完成后进行梯度温度速降式降温,由于陶瓷材料具备抗冷热性能,不会对陶瓷材料产生影响,梯度温度速降式降温后,不仅使颗粒中的缝隙变小,陶瓷材料与四针状氧化锌的接触更加密切,导电性能稳定,还使得晶界处的薄膜变薄,增强陶瓷材料的导电性能。

具体实施方式

31.下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

32.一种导电性较强的高性能陶瓷材料,其特征在于,包括以下重量份数的原料:

33.20~30份氧化锆、80~120份碳化硅、8~16份氧化铝、10~25份锌粉,2~4份氧化钇、20~40份烧结助剂、30~60份聚乙烯醇。

34.优选的,所述烧结助剂为使用聚乙烯醇包裹氧化铝和氧化钇。

35.本发明第二方面提供:一种导电性较强的高性能陶瓷材料的制备方法,其特征在于:

36.制备导电性较强的高性能陶瓷材料的工艺流程为:

37.球磨陶瓷原料,特殊的高温煅烧,二次球磨,制备烧结助剂,液相烧结,降温制得成品。

38.优选的,包括以下具体步骤:

39.(1)将氧化锆与碳化硅按一定比例混合,形成混料;

40.(2)向混料中加入与混料体积比为1:1的无水乙醇,制成湿料,将湿料置于陶瓷球磨机中进行研磨,研磨时间为1.5~3h;

41.(3)将混料置于焙烧炉中进行第一次高温煅烧;

42.(4)调节温度,通入氮气,进行第二次高温煅烧;

43.(5)保持温度不变,向混料中通入脉冲电流进行第三次高温煅烧,电流大小为1ka,周期为0.08s;

44.(6)高温煅烧后加入锌粉,将混料置于陶瓷球磨机中,进行二次球磨;

45.(7)将氧化铝和氧化钇浸于三倍体积的聚乙烯醇中,制得烧结助剂;

46.(8)向二次球磨后的混料中加入烧结助剂,进行液相烧结,烧结温度保持在930~1100℃;

47.(9)烧结完成后进行梯度温度速降式降温,制得成品。

48.优选的,上述步骤(1)中:氧化锆与碳化硅的质量比为1:4。

49.优选的,上述步骤(3)中:第一次高温煅烧温度为1700~1900℃。

50.优选的,上述步骤(4)中:第二次高温煅烧温度为2100~2300℃。

51.优选的,上述步骤(6)中:加入锌粉与混料体积比为1:8。

52.优选的,上述步骤(7)中:氧化铝和氧化钇质量比为4:1。

53.优选的,上述步骤(9)中:降温时,降温速度为200℃/h,每隔1h进行一次保温,保温时间为0.5h。

54.实施例1:导电性较强的高性能陶瓷材料一:

55.一种导电性较强的高性能陶瓷材料,该陶瓷材料组分以重量份计:

56.氧化锆重量分数为20份、碳化硅重量分数为80份、氧化铝重量分数为8份、锌粉重量分数为10份、氧化钇重量分数为2份、烧结助剂重量分数为20份、聚乙烯醇重量分数为30份。

57.该陶瓷材料的制备方法如下:

58.(1)将重量分数为20份的氧化锆与80份的碳化硅混合,形成混料;

59.(2)向混料中加入与混料体积比为1:1的无水乙醇,制成湿料,将湿料置于陶瓷球磨机中进行研磨,研磨时间为1.5h;

60.(3)将混料置于焙烧炉中进行第一次高温煅烧,煅烧温度为1700℃;

61.(4)调节温度为2100℃,通入氮气,进行第二次高温煅烧;

62.(5)保持温度不变,向混料中通入脉冲电流进行第三次高温煅烧,电流大小为1ka,周期为0.08s;

63.(6)高温煅烧后加入重量分数为10份的锌粉,将混料置于陶瓷球磨机中,进行二次球磨;

64.(7)将重量分数为8份的氧化铝和2份的氧化钇浸于三倍体积的聚乙烯醇中,制得烧结助剂;

65.(8)向二次球磨后的混料中加入烧结助剂,进行液相烧结,烧结温度保持在1000℃;

66.(9)烧结完成后进行梯度温度速降式降温,降温速度为200℃/h,每隔1h进行一次保温,保温时间为0.5h,制得成品。

67.实施例2:导电性较强的高性能陶瓷材料一:

68.一种导电性较强的高性能陶瓷材料,该陶瓷材料组分以重量份计:

69.氧化锆重量分数为30份、碳化硅重量分数为120份、氧化铝重量分数为16份、锌粉重量分数为25份、氧化钇重量分数为4份、烧结助剂重量分数为40份、聚乙烯醇重量分数为60份。

70.该陶瓷材料的制备方法如下:

71.(1)将重量分数为30份的氧化锆与120份的碳化硅混合,形成混料;

72.(2)向混料中加入与混料体积比为1:1的无水乙醇,制成湿料,将湿料置于陶瓷球磨机中进行研磨,研磨时间为3h;

73.(3)将混料置于焙烧炉中进行第一次高温煅烧,煅烧温度为1900℃;

74.(4)调节温度为2300℃,通入氮气,进行第二次高温煅烧;

75.(5)保持温度不变,向混料中通入脉冲电流进行第三次高温煅烧,电流大小为1ka,周期为0.08s;

76.(6)高温煅烧后加入重量分数为25份的锌粉,将混料置于陶瓷球磨机中,进行二次球磨;

77.(7)将重量分数为16份的氧化铝和4份的氧化钇浸于三倍体积的聚乙烯醇中,制得烧结助剂;

78.(8)向二次球磨后的混料中加入烧结助剂,进行液相烧结,烧结温度保持在1100℃;

79.(9)烧结完成后进行梯度温度速降式降温,降温速度为200℃/h,每隔1h进行一次保温,保温时间为0.5h,制得成品。

80.对比例1

81.对比例1的处方组成同实施例1。该导电性较强的高性能陶瓷材料的制备方法与实施例1的区别仅在于不进行步骤(3)(4)(5)的制备过程,将步骤(6)修改为:将步骤(2)得到的混料进行高温煅烧,煅烧温度为1900℃,煅烧后加入重量分数为10份的锌粉进行二次球磨。其余制备步骤同实施例1。

82.对比例2

83.对比例2的处方组成同实施例1。该导电性较强的高性能陶瓷材料的制备方法与实施例1的区别仅在于不进行步骤(7)的制备,步骤(8)中依次加入聚乙烯醇、裹氧化铝和氧化

钇。其余制备步骤同实施例1。

84.对比例3

85.对比例3的处方组成同实施例1。该导电性较强的高性能陶瓷材料的制备方法与实施例1的区别仅在于步骤(9)的不同,将步骤(9)修改为:烧结完成后自然冷却至室温,制得成品。其余制备步骤同实施例1。

86.试验例1

87.1、试验方法

88.实施例1与对比例1、2、3为对照试验,将陶瓷材料进行电阻率测量进行对比。

89.2、试验结果

90.实施例1与对比例1、2、3电阻率对比。

91.表1陶瓷材料的电阻率

[0092] 电阻率(ω

·

cm)实施例136.95对比例159.37对比例244.21对比例340.99

[0093]

通过实施例1与对比例1、2、3电阻率进行对比,可以明显发现实施例1制备的陶瓷材料电阻率较低,而对比例1与对比利2电阻率较高,电阻率越低导电性越强,说明实施例1制备的陶瓷材料导电性较强,预示着本发明制备的导电性较强的高性能陶瓷材料具备不仅具备导电性能,且导电性能优异。

[0094]

试验例2

[0095]

1、试验方法

[0096]

实施例1与对比例1为对照试验,将陶瓷材料在空气中加热至1500℃,进行10次急速冷却和加热,观察陶瓷表面变化,进行抗冷热冲击测试进行对比。

[0097]

2、试验结果

[0098]

实施例1与对比例2抗冷热冲击对比

[0099]

表2陶瓷表面变化

[0100] 5次急速冷却和加热10次急速冷却和加热实施例1陶瓷表面光滑陶瓷表面光滑对比例2陶瓷表面出现细小裂纹陶瓷表面出现明显裂纹

[0101]

通过实施例1与对比例2抗冷热冲击对比,可以明显发现实施例1在经过10次急速冷却和加热后,表面仍无裂痕出现,说明实施例1使用的特殊多次煅烧方式,可以提高陶瓷材料的性能,增强陶瓷材料的抗冷热冲击性能,预示着本发明制备的导电性较强的高性能陶瓷材料具备优异的导电性能的同时,还具备较强的抗冷热冲击性。

[0102]

最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

完整全部详细技术资料下载

当前第1页1 2 3

该技术已申请专利。仅供学习研究,如用于商业用途,请联系技术所有人。

技术研发人员:钱清廉

技术所有人:钱清廉

我是此专利的发明人

上一篇:多媒体数据的数据关联窗口的调节方法及装置与流程

上一篇:一种核桃自动脱壳机及脱壳工艺的制作方法

相关技术

一种高效保水肥料及其制备方法...

复合增强的多孔尖晶石-刚玉-...

一种利用湿法磷酸制备磷酸亚铁...

一种以海藻酸钠为原料的氮硫掺...

一种提高马铃薯产量和品质的生...

一种利用废弃塑料控制生物炭中...

一种新型干法水泥窑窑尾预热系...

一种高磁导率低介电常数的复合...

一种氧化锌电阻片及其制备方法...

一种下降法晶体生长装置的制作...

网友询问留言已有0条留言

还没有人留言评论。精彩留言会获得点赞!

1

精彩留言,会给你点赞!发布评论

导电滑环相关技术

导电结构及其制造方法与制造工艺

镶嵌式密封导电环的制造方法与工艺

滑动导电结构的制造方法与工艺

电磁开关器插接式导电连接结构的制造方法与工艺

一种弹性爪滑环导电的动力与信息传输钻杆的制造方法与工艺

导电插塞结构及其形成方法与制造工艺

应用于海绵城市生态系统中的导水装置的制造方法

一种易滑座结构的制造方法与工艺

镶嵌式密封导电环的制造方法与工艺

一种非接触式滑环的制造方法与工艺

陶瓷材料相关技术

一种铌酸钾钠无铅压电陶瓷的制备方法与流程

一种铌酸盐微波介质陶瓷材料及其制备方法与流程

Nb5+掺杂的单斜相VO2金属‑绝缘体相变陶瓷及其制备方法与流程

一种陶瓷书签的制备方法与流程

一种钛酸铋钠基电致伸缩陶瓷及其制备方法和应用与流程

基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法与流程

高机械强度MnZn铁氧体材料的制造方法与工艺

一种应用于塔式太阳能热发电系统的太阳能陶瓷材料的制造方法与工艺

氧化铝陶瓷材料及其制备方法与流程

一种多层片式NTC热敏电阻器陶瓷材料及其制备方法与流程

无机耐高温涂料相关技术

有机-无机复合水性漆及其制备方法

一种导电耐高温紫外光固化涂料及其制备方法

一种高温高效多功能无机电热膜及其制作方法

涡轮增压器用叶轮的制作方法

一种无机耐高温干膜润滑剂的制作方法

一种有机硅杂化物及其有机硅复合涂料的制备方法

一种高含镍钢抗高温氧化涂料的制作方法

高性能无机涂料的制作方法

无机高温耐磨涂料的制作方法

一种防裂耐高温涂料的制作方法

高强高导铜合金相关技术

柱式纳米合金高强格室的制作方法

一种高强高导铜合金屏蔽材料及其制备方法

一种高强合金钢管及其铸造方法

一种高耐磨的铜合金块的制作方法

高强高弹高导铜合金的制作方法

高强度高导电铜铬锆合金及其板带的制备方法

一种大尺寸弧形状银铜板的锻造加工方法

一种高强度高导电率铜镁系合金及其制备方法

一种Cu-Ni-Al系合金性能提升方法

高强高塑耐氯离子腐蚀的铸造合金及其制备方法

莫来石相关技术

一种石纹花盆及其制造工艺的制造方法与工艺

用于脱硫搅拌器的复合纤维增强耐火浇注料的制造方法与工艺

一种抗结皮耐磨浇注料的制造方法与工艺

基于大曲各成分理化指标与产酒量和酒质联系的测定方法与流程

一种多晶气冷硅铸锭炉的制造方法与工艺

一种纤维增韧耐火材料的制造方法与工艺

一种纤维增韧耐火材料的制备方法与流程

一种RH精炼炉用刚玉‑尖晶石浇注料及其制备方法与流程

一种莫来石包裹型耐火材料的制造方法与工艺

一种五氧化二钒结合碳化硅耐火材料的制造方法与工艺

导电陶瓷为什么能导电相关技术

分槽式导电陶瓷蒸发舟的制作方法

U形导电陶瓷蒸发舟的制作方法

一种屏蔽红外、远红外线及导电玻璃、陶瓷膜的制备方法

覆盖有金属材料的选择性导电的陶瓷的制作方法

一种导电木陶瓷粉及其制造方法

利用导电磁粉加工非导电陶瓷的放电加工方法

导电糊及陶瓷电子部件的制作方法


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/259439.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-16
下一篇2023-04-16

发表评论

登录后才能评论

评论列表(0条)

    保存