目前,空间计量经济学研究包括以下四个感兴趣的领域:
计量经济模型中空间效应的确定; 合并了空间影响的模型的估计;空间效应存在的说明、检验和诊断;空间预测。
空间计量经济学模型有多种类型(Anselin,et al. 2004)。 首先介绍纳入了空间效应(空间相关和空间差异)、适用于截面数据的空间常系数回归模型,包括空间滞后模型(Spatial Lag Model,SLM)与空间误差模型(Spatial Error Model,SEM)两种,以及空间变系数回归模型——地理加权回归模型(Geographical Weighted Regression,GWR)。适用于时间序列和截面数据合成的空间面板数据计量经济学模型将在以后予以介绍。
空间滞后模型(Spatial Lag Model,SLM)主要是探讨各变量在一地区是否有扩散现象(溢出效应)。其模型表达式为:参数 反映了自变量对因变量的影响,空间滞后因变量 是一内生变量,反映了空间距离对区域行为的作用。区域行为受到文化环境及与空间距离有关的迁移成本的影响,具有很强的地域性(Anselin et al.,1996)。由于SLM模型与时间序列中自回归模型相类似,因此SLM也被称作空间自回归模型(Spatial Autoregressive Model,SAR)。
空间误差模型(Spatial Error Model,SEM)存在于扰动误差项之中的空间依赖作用,度量了邻近地区关于因变量的误差冲击对本地区观察值的影响程度。由于SEM模型与时间序列中的序列相关问题类似,也被称为空间自相关模型(Spatial Autocorrelation Model,SAC)。
估计技术:鉴于空间回归模型由于自变量的内生性,对于上述两种模型的估计如果仍采用OLS,系数估计值会有偏或者无效,需要通过IV、ML或GLS、GMM等其他方法来进行估计。Anselin(1988)建议采用极大似然法估计空间滞后模型(SLM)和空间误差模型(SEM)的参数。
空间自相关检验与SLM、SEM的选择:判断地区间创新产出行为的空间相关性是否存在,以及SLM和SEM那个模型更恰当,一般可通过包括Moran’s I检验、两个拉格朗日乘数(Lagrange Multiplier)形式LMERR、LMLAG及其稳健(Robust)的R-LMERR、R-LMLAG)等形式来实现。由于事先无法根据先验经验推断在SLM和SEM模型中是否存在空间依赖性,有必要构建一种判别准则,以决定哪种空间模型更加符合客观实际。Anselin和Florax(1995)提出了如下判别准则:如果在空间依赖性的检验中发现LMLAG较之LMERR在统计上更加显著,且R-LMLAG显著而R-LMERR不显著,则可以断定适合的模型是空间滞后模型;相反,如果LMERR比LMLAG在统计上更加显著,且R-LMERR显著而R-LMLAG不显著,则可以断定空间误差模型是恰当的模型。
除了拟合优度R2检验以外,常用的检验准则还有:自然对数似然函数值(Log likelihood,LogL)、似然比率(Likelihood Ratio,LR)、赤池信息准则(Akaike information criterion,AIC)、施瓦茨准则(Schwartz criterion,SC)。对数似然值越大,AIC和SC值越小,模型拟合效果越好。这几个指标也用来比较OLS估计的经典线性回归模型和SLM、SEM,似然值的自然对数最大的模型最好。
空间变系数回归模型及估计:就目前国内外的研究来看,大多直接假定横截面单元是同质的,即地区或企业之间没有差异。传统的OLS只是对参数进行“平均”或“全域”估计,不能反映参数在不同空间的空间非稳定性(吴玉鸣,李建霞,2006;苏方林,2007)。 当用横截面数据建立计量经济学模型时,由于这种数据在空间上表现出的复杂性、自相关性和变异性,使得解释变量对被解释变量的影响在不同区域之间可能是不同的,假定区域之间的经济行为在空间上具有异质性的差异可能更加符合现实。空间变系数回归模型(Spatial Varying-Coefficient Regression Model)中的地理加权回归模型(Geographical Weighted Regression,GWR)是一种解决这种问题的有效方法。 、空间计量主要命令
spmat 生成空间权重矩阵
spatwmat 用于定义空间权重矩阵
spatgsa 用于全局空间自相关检验
gsa表示global spatial autocorrelation
spatlsa 进行局部空间自相关检验
lsa表示local spatial autocorrelation
spatcorr 考察空间自相关指标对距离临界值d的依赖性
spatdiag 针对ols回归结果,考察是否存在空间效应
spatreg 估计空间滞后与空间误差模型
空间面板主要命令为:help xsmle
Spatial Autoregressive (SAR) model
xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) model(sar) [SAR_options]
Spatial Durbin (SDM) model
xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) model(sdm) [SDM_options]
Spatial Autocorrelation (SAC) model
xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) emat(name) model(sac) [SAC_options]
Spatial Error (SEM) model
xsmle depvar [indepvars] [if] [in] [weight] , emat(name) model(sem) [SEM_options]
Generalized Spatial Panel Random Effects (GSPRE) model
xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) model(gspre) [emat(name) GSPRE_options]
结构方程模型是:一般线性模型的扩展,并非单指某一种特定的统计方法,而是一套用以分析共变结构的技术整合。
结构方程模型组成及应用:
结构方程模型由两部分组成,即测量模型(Measurement Model)和结构模型(Structural Model)。本文将主要介绍以上两个模型的概念及其应用。
1、测量模型
在实际研究中,并非所有的概念都是可以被直接观察和测量的。
比如我们在调研爱采购卖家的体验时,这里的卖家体验其实就是一个抽象的概念,是卖家对平台所有可观测量化指标的综合反映,这些指标可能会包括卖家通过平台获得的询盘量、订单量、主要权益的满意度、接收到服务速度和质量等等。
在SEM中,如用户体验这些抽象且无法直接测量的概念,被称作“潜变量(Latent Variable)”,而那些能被直接观测的变量,如询盘量,则称为“观察变量(Observed Variable)”或“外显变量(Manifest Variable)”。
我们了解越多卖家对平台有效观察变量的反馈,对卖家体验的刻画就越真实可靠。
基于对测量模型的验证,我们发现卖家对平台的综合体验,可以在一定程度解释为卖家对平台的效果体验,权益体验和服务体验(满意度)的集合。
需要注意的是,观测变量并非能完全解释潜变量,在整体测量模型中同时存在无法解释的误差(也称残差),误差大小及分布的影响是实际施测中同样需要考虑的部分。
2、结构模型
与检验观测变量和潜变量之间关系的测量模型不同,结构模型主要用于检验潜变量间的关系。如果单独看待结构模型,就是传统的路径分析(Path Analysis),旨在解释变量间的因果或预测关系。
随着研究的深入,我们发现过去研究中常用的相关分析或一元/多元回归分析方法很难解释变量间的因果关系,比如在研究爱采购卖家续费意愿时,仅通过相关分析,很难判断是体验影响续费意愿,还是续费意愿影响体验。
而单纯的使用多元回归分析,我们只能发现各体验维度指标对续费意愿的独立影响,而忽视了各体验指标间的相互作用。
结构方程模型有以下几点需要注意:
1、SEM更多用于验证性的分析。
结构关系方程模型(SEM)属于验证式的协方差结构模型分析,完整的协方差结构模型包含两个次模型:①测量模型(如图),潜变量(即不可自我描述的因变量)被显性指标(即观察变量)所测量或概念化,测量模型也可以复杂一些,比如二阶测量模型,;②结构模型(如图),潜变量之间的假设关系,以及无法解释的变异量部分,以确认假设的潜变量之间的关系以及潜变量与显性指标的一致性程度。当然,复杂度更高的结构模型比比皆是,这就太考验理论能力、概念化能力、量表设计能力和SEM模型控制能力了。欢迎分享,转载请注明来源:夏雨云
评论列表(0条)