一、展现量
这个展现量包括的东西比较多,当然seo是其中的一部分,我这里说的“量”的概念不单单指的是“数量”,还包括“质量”。提升展现量也就是提升你在网络上边的曝光率,无论你是采用付费广告、搜索推广还是seo或者说你用电子邮件、论坛、博客等等之类这个具体的我在[网站推广基础] 里边罗列了很多的方法。
二、点击量
当然你的展现量增加的同时,还要考虑如何促使网民去点击,不能只是无休止的去义务的增加网络的资源,在[刺激你的点击冲动]默默勿问也提到过这个问题,无论是通过标题党来吸引点击,还是通过图片之类诱惑点击,都要考虑为后边订单做好铺垫,不能吸引过来一批没有意义的点击,可以换角度来讲事实,不能让浏览者感觉自己是被欺骗的点击,淡然做seo标题、描述也要考虑同样的效果。
三、访问量
有了点击量你把浏览者吸引了过来,不能让他一进来就出去啊,这个也是在点击量中说的可以换角度陈述事实,不能无中生有的原因,要做好网站的体验,不能只看网站IP还要看网站的PV浏览者的浏览深度,就拿个简单的列子来说,比如说你的网站打开的速度很慢,你认为浏览者会等多久来看到你的首页,或者说会等多久来看到你的一个产品,在网络[网络视频推广]中我提到过一个问题,一个真正要找产品的浏览者会在你的一个网站停留多久?会不会有时间去看你华丽的FLISH或者视频?
四、咨询量
这个已经到了“漏斗”的第四个层次了,当然大家也看到了“漏斗”越来越小,有的朋友就说了我的网站有IP有PV为什么咨询量少呢?当然你IP高PV高说明你前几个步骤做的比较好,我就不说哪些无意义的流量,我只说有效流量和意向客户,如果你的咨询量较低你考虑一下自己有没有在网站内部明显自己的优势、详细介绍自己是做什么的,或者说也是最重要的你的联系方式是否明显,是否“即时”是否在任何的页面,都能够非常容易的找到你的联系方式非常方便和客服进行沟通。网络营销本来就属于相对被动的营销,所以要想办法时刻“提醒”浏览者我是做什么产品,我在这个产品行业内的优势在哪里。
五、订单量
这个是我们最关注的问题,当咨询量有了,好这个是时候促使订单我就抛开网站来说,因为在这个时候在某种意义上来讲已经“化被动为主动”了这个时候就看客服的专业度、服务以及自己产品的真正优势和一些销售技巧来来绝对这个订单量,还有就是后期的跟踪和促使二次购物。
当然在整个“漏斗营销”的过程中也在时刻的关注这些不断变化的数字:展现量和点击量的比例、点击量和访问量的比一直到最后订单量,SEM的整个过程都是要用数字来说话的,因为这个才是最权威的表现,在这些的数字中也能够很轻松的看出在哪个环节出了问题,这样才能更有针对性的进行调整,才能更好的维护这个“漏斗”的正常形状,不会让其成为畸形。
SD是标准偏差,反映的是样本变量值的离散程度。SEM是标准误差,反映的是样本均数之间的变异。
SD为样本标准差 ,根据标准差SD能反映变量值的离散程度 。正负值就是在计算好的SD上加个正负号, 表示在这个范围内波动;在平均值上加上或者减去这个数字,都认为在正常范围内 。
标准差的统计学常用符号为s,医学期刊常用SD表示。标准差是一个极为重要的离散度指标,常用于表示变量分布的离散程度 。对于一组变量,只用平均数来描写其集中趋势是不全面的,还需要用标准差来描写其离散趋势。标准差用公式表示为:s= ∑(x-ˉx) 2 n-1由上式可见,标准差的基本内容是离均差,即(x-ˉx)。它说明一组变量值(x)与其算术均数(ˉx)的距离,故能描述变异大小。s小表示个体间变异小,即变量值分布较集中、整齐s大表示个体间变异大,即各变量值分布较分散。
SEM是样品标准差,即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度,反映的是样本均数之间的变异。标准误用来衡量抽样误差。标准误越小,表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大。因此,标准误是统计推断可靠性的指标。
拓展资料
生物统计学是生物数学中最早形成的一大分支,它是在用统计学的原理和方法研究生物学的客观现象及问题的过程中形成的,生物学中的问题又促使生物统计学中大部分基本方法进一步发展。生物统计学是应用统计学的分支,它将统计方法应用到医学及生物学领域,在此,数理统计学和应用统计学有些重叠。
参考资料百度百科—生物统计学
SEM、TEM、XRD、AES、STM、AFM的区别主要是名称不同、工作原理不同、作用不同、
一、名称不同
1、SEM,英文全称:Scanningelectronmicroscope,中文称:扫描电子显微镜。
2、TEM,英文全称:TransmissionElectronMicroscope,中文称:透射电子显微镜。
3、XRD,英文全称:Diffractionofx-rays,中文称:X射线衍射。
4、AES,英文全称:AugerElectronSpectroscopy,中文称:俄歇电子能谱。
5、STM,英文全称:ScanningTunnelingMicroscope,中文称:扫描隧道显微镜。
6、AFM,英文全称:AtomicForceMicroscope,中文称:原子力显微镜。
二、工作原理不同
1.扫描电子显微镜的原理是用高能电子束对样品进行扫描,产生各种各样的物理信息。通过接收、放大和显示这些信息,可以观察到试样的表面形貌。
2.透射电子显微镜的整体工作原理如下:电子枪发出的电子束经过冷凝器在透镜的光轴在真空通道,通过冷凝器,它将收敛到一个薄,明亮而均匀的光斑,辐照样品室的样品。通过样品的电子束携带着样品内部的结构信息。通过样品致密部分的电子数量较少,而通过稀疏部分的电子数量较多。
物镜会聚焦点和一次放大后,电子束进入第二中间透镜和第一、第二投影透镜进行综合放大成像。最后,将放大后的电子图像投影到观察室的荧光屏上。屏幕将电子图像转换成可视图像供用户观察。
3、x射线衍射(XRD)的基本原理:当一束单色X射线入射晶体,因为水晶是由原子规则排列成一个细胞,规则的原子之间的距离和入射X射线波长具有相同的数量级,因此通过不同的原子散射X射线相互干涉,更影响一些特殊方向的X射线衍射,衍射线的位置和强度的空间分布,晶体结构密切相关。
4.入射的电子束和材料的作用可以激发原子内部的电子形成空穴。从填充孔到内壳层的转变所释放的能量可能以x射线的形式释放出来,产生特征性的x射线,也可能激发原子核外的另一个电子成为自由电子,即俄歇电子。
5.扫描隧道显微镜的工作原理非常简单。一个小电荷被放在探头上,电流从探头流出,穿过材料,到达下表面。当探针通过单个原子时,通过探针的电流发生变化,这些变化被记录下来。
电流在流经一个原子时涨落,从而非常详细地描绘出它的轮廓。经过多次流动后,人们可以通过绘制电流的波动得到构成网格的单个原子的美丽图画。
6.原子力显微镜的工作原理:当原子间的距离减小到一定程度时,原子间作用力迅速增大。因此,样品表面的高度可以直接由微探针的力转换而来,从而获得样品表面形貌的信息。
三、不同的功能
1.扫描电子显微镜(SEM)是介于透射电子显微镜和光学显微镜之间的一种微观形貌观察方法,可以直接利用样品表面材料的材料性质进行微观成像。
扫描电子显微镜具有高倍放大功能,可连续调节20000~200000倍。它有一个大的景深,一个大的视野,一个立体的形象,它可以直接观察到各种样品在不均匀表面上的细微结构。
样品制备很简单。目前,所有的扫描电镜设备都配备了x射线能谱仪,可以同时观察微观组织和形貌,分析微区成分。因此,它是当今非常有用的科学研究工具。
2.透射电子显微镜在材料科学和生物学中有着广泛的应用。由于电子容易散射或被物体吸收,穿透率低,样品的密度和厚度会影响最终成像质量。必须制备超薄的薄片,通常为50~100nm。
所以当你用透射电子显微镜观察样品时,你必须把它处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常挂在预处理过的铜线上观察。
3X射线衍射检测的重要手段的人们意识到自然,探索自然,尤其是在凝聚态物理、材料科学、生活、医疗、化工、地质、矿物学、环境科学、考古学、历史、和许多其他领域发挥了积极作用,不断拓展新领域、新方法层出不穷。
特别是随着同步辐射源和自由电子激光的兴起,x射线衍射的研究方法还在不断扩展,如超高速x射线衍射、软x射线显微术、x射线吸收结构、共振非弹性x射线衍射、同步x射线层析显微术等。这些新的X射线衍射检测技术必将为各个学科注入新的活力。
4,俄歇电子在固体也经历了频繁的非弹性散射,可以逃避只是表面的固体表面原子层的俄歇电子,电子的能量通常是10~500电子伏特,他们的平均自由程很短,约5~20,所以俄歇电子能谱学调查是固体表面。
俄歇电子能谱通常采用电子束作为辐射源,可以进行聚焦和扫描。因此,俄歇电子能谱可用于表面微观分析,并可直接从屏幕上获得俄歇元素图像。它是现代固体表面研究的有力工具,广泛应用于各种材料的分析,催化、吸附、腐蚀、磨损等方面的研究。
5.当STM工作时,探头将足够接近样品,以产生具有高度和空间限制的电子束。因此,STM具有很高的空间分辨率,可以用于成像工作中的科学观测。
STM在加工的过程中进行了表面上可以实时成像进行了表面形态,用于查找各种结构性缺陷和表面损伤,表面沉积和蚀刻方法建立或切断电线,如消除缺陷,达到修复的目的,也可以用STM图像检查结果是好还是坏。
6.原子力显微镜的出现无疑促进了纳米技术的发展。扫描探针显微镜,以原子力显微镜为代表,是一系列的显微镜,使用一个小探针来扫描样品的表面,以提供高倍放大。Afm扫描可以提供各类样品的表面状态信息。
与传统显微镜相比,原子力显微镜观察样品的表面的优势高倍镜下在大气条件下,并且可以用于几乎所有样品(与某些表面光洁度要求)并可以获得样品表面的三维形貌图像没有任何其他的样品制备。
扫描后的三维形貌图像可进行粗糙度计算、厚度、步长、方框图或粒度分析。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)