三种专门用于线程同步的机制:POSIX信号量,互斥量和条件变量.
在Linux上信号量API有两组,一组是System V IPC信号量,即PV操作,另外就是POSIX信号量,POSIX信号量的名字都是以sem_开头.
phshared参数指定信号量的类型,若其值为0,就表示这个信号量是当前进程的局部信号量,否则该信号量可以在多个进程之间共享.value值指定信号量的初始值,一般与下面的sem_wait函数相对应.
其中比较重要的函数sem_wait函数会以原子操作的方式将信号量的值减一,如果信号量的值为零,则sem_wait将会阻塞,信号量的值可以在sem_init函数中的value初始化sem_trywait函数是sem_wait的非阻塞版本sem_post函数将以原子的操作对信号量加一,当信号量的值大于0时,其他正在调用sem_wait等待信号量的线程将被唤醒.
这些函数成功时返回0,失败则返回-1并设置errno.
生产者消费者模型:
生产者对应一个信号量:sem_t producer
消费者对应一个信号量:sem_t customer
sem_init(&producer,2)----生产者拥有资源,可以工作
sem_init(&customer,0)----消费者没有资源,阻塞
在访问公共资源前对互斥量设置(加锁),确保同一时间只有一个线程访问数据,在访问完成后再释放(解锁)互斥量.
互斥锁的运行方式:串行访问共享资源
信号量的运行方式:并行访问共享资源
互斥量用pthread_mutex_t数据类型表示,在使用互斥量之前,必须使用pthread_mutex_init函数对它进行初始化,注意,使用完毕后需调用pthread_mutex_destroy.
pthread_mutex_init用于初始化互斥锁,mutexattr用于指定互斥锁的属性,若为NULL,则表示默认属性。除了用这个函数初始化互斥所外,还可以用如下方式初始化:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER。
pthread_mutex_destroy用于销毁互斥锁,以释放占用的内核资源,销毁一个已经加锁的互斥锁将导致不可预期的后果。
pthread_mutex_lock以原子操作给一个互斥锁加锁。如果目标互斥锁已经被加锁,则pthread_mutex_lock则被阻塞,直到该互斥锁占有者把它给解锁.
pthread_mutex_trylock和pthread_mutex_lock类似,不过它始终立即返回,而不论被操作的互斥锁是否加锁,是pthread_mutex_lock的非阻塞版本.当目标互斥锁未被加锁时,pthread_mutex_trylock进行加锁操作;否则将返回EBUSY错误码。注意:这里讨论的pthread_mutex_lock和pthread_mutex_trylock是针对普通锁而言的,对于其他类型的锁,这两个加锁函数会有不同的行为.
pthread_mutex_unlock以原子操作方式给一个互斥锁进行解锁操作。如果此时有其他线程正在等待这个互斥锁,则这些线程中的一个将获得它.
三个打印机轮流打印:
输出结果:
如果说互斥锁是用于同步线程对共享数据的访问的话,那么条件变量就是用于在线程之间同步共享数据的值.条件变量提供了一种线程之间通信的机制:当某个共享数据达到某个值时,唤醒等待这个共享数据的线程.
条件变量会在条件不满足的情况下阻塞线程.且条件变量和互斥量一起使用,允许线程以无竞争的方式等待特定的条件发生.
其中pthread_cond_broadcast函数以广播的形式唤醒所有等待目标条件变量的线程,pthread_cond_signal函数用于唤醒一个等待目标条件变量线程.但有时候我们可能需要唤醒一个固定的线程,可以通过间接的方法实现:定义一个能够唯一标识目标线程的全局变量,在唤醒等待条件变量的线程前先设置该变量为目标线程,然后采用广播的方式唤醒所有等待的线程,这些线程被唤醒之后都检查该变量以判断是否是自己.
采用条件变量+互斥锁实现生产者消费者模型:
运行结果:
阻塞队列+生产者消费者
运行结果:
sem_wait() 减小(锁定)由sem指定的信号量的值.如果信号量的值比0大,那么进行减一的操作,函数立即返回.如果信号量当前为0值,那么调用就会一直阻塞直到或者是信号量变得可以进行减一的操作(例如,信号量的值比0大),或者是信号处理程序中断调用
sem_trywait() 和 sem_wait()是一样的,除了如果不能够对信号量立即进行减一,那么sem_trywait()就会返回一个错误(错误号是AGAIN)而不是锁定.sem_timedwait() 和 sem_wait()是一样的,除了如果减一操作不能立即执行的话,abs_timeout 指定了调用应该被阻塞的时间限制.abs_timeout 参数指向了一个结构体指定了由秒和纳秒组成的绝对的超时值:从1970-01-01 00:00:00 +0000纪元开始的UTC,结构体的定义如下:struct timespec {time_t tv_sec/* Seconds */long tv_nsec/* Nanoseconds [0 .. 999999999] */}如果超时值已经超过了调用规定的值,那么信号量不能被立即锁定,之后sem_timedwait() 为超时失败(error设置为ETIMEDOUT).
如果操作立即生效,那么sem_timedwait() 永远不会返回超时的错误,不管abs_timeout的值.更进一步的是,在这种情况下abs_timeout值的有效性都不会检查. EINTR The call was interrupted by a signal handlersee signal(7).//调用被信号处理中断
EINVAL sem is not a valid semaphore.//sem不是有效的信号量
The following additional error can occur for sem_trywait()://下面的错误是sem_trywait()可能发生的:
EAGAIN The operation could not be performed without blocking (i.e., thesemaphore currently has the value zero).//除了锁定无法进行别的操作(如信号量当前是0值).
The following additional errors can occur for sem_timedwait()://下面的错误是sem_timedwait()可能发生的:
EINVAL The value of abs_timeout.tv_nsecs is less than 0, or greater than orequal to 1000 million.//abs_timeout.tv_nsecs 的值比0小或者大于等于1000毫秒(译者注:纳秒的值不能比0小,不能比1秒大)
ETIMEDOUTThe call timed out before the semaphore could be locked.//在信号量锁定之前就超时了 对这些函数,信号处理程序总是会中断阻塞,不管是否使用了sigaction(2)的SA_RESTART标志位.
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)