典型的数据仓库系统包括哪几部分

典型的数据仓库系统包括哪几部分,第1张

?(一)数据源是数据仓库系统的基础,是整个系统的数据源泉。通常包括企业内部信息和外部信息。内部信息包括存放于rdbms中的各种业务处理数据和各类文档数据。外部信息包括各类法律法规、市场信息和竞争对手的信息等等;(二)数据的存储与管理是整个数据仓库系统的核心。数据仓库的真正关键是数据的存储和管理。数据仓库的组织管理方式决定了它有别于传统数据库,同时也决定了其对外部数据的表现形式。要决定采用什么产品和技术来建立数据仓库的核心,则需要从数据仓库的技术特点着手分析。针对现有各业务系统的数据,进行抽取、清理,并有效集成,按照主题进行组织。数据仓库按照数据的覆盖范围可以分为企业级数据仓库和部门级数据仓库(通常称为数据集市)。(三)olap(联机分析处理)服务器对分析需要的数据进行有效集成,按多维模型予以组织,以便进行多角度、多层次的分析,并发现趋势。其具体实现可以分为:rolap(关系型在线分析处理)、molap(多维在线分析处理)和holap(混合型线上分析处理)。rolap基本数据和聚合数据均存放在rdbms之中;molap基本数据和聚合数据均存放于多维数据库中;holap基本数据存放于rdbms之中,聚合数据存放于多维数据库中。(四)前端工具主要包括各种报表工具、查询工具、数据分析工具、数据挖掘工具以数据挖掘及各种基于数据仓库或数据集市的应用开发工具。其中数据分析工具主要针对olap服务器,报表工具、数据挖掘工具主要针对数据仓库。-----------------------------由安信公司历经4年研发的监测数据管理平台,采用独创的技术架构,在b/s架构上融入c/s模式,囊括了实验室管理系统、监测站公自动化、监测站综合业务管理系统、监测数据上报系统等诸多系统,把各个系统有机融合在一起,不同的业务科室展现不同工作页面,内部却又实现了数据共享。系统页面简单大方,操作轻松方便,在不增加实验室工作量的情况下,能够让监测数据进入系统中,原始记录单等诸多实验室报表可协助生成(不完全生成,需人工签字),随后科室比如质控、综合、主管领导即可对数据进行多层次利用查询,并自动生成各类监测报表。系统采用流程化工作模式,对不同监测任务实施不同工作流,保证工作的科学和严谨,对于单位内部职工每天待事宜清晰显示,让内部职工对每天工作都一目了然。系统工作流程可自由配置,工作单可根据按照配置流转相应单位,并且可以对工作流程进行追踪查询,作为领导可以查看到每一项安排工作的流转情况、完成情况和监测结果。系统支持短信功能,对于领导等科室一些紧急任务可在系统下达后,立刻用短信通知相应工作人员,对于单位紧急通知等也可以进行短信通知,让监测站的工作更加快捷高效。系统提供深层次数据挖掘功能,能够根据监测数据,快速提供某监测点的多方位数据,比如历年来某月cod的监测数据变化,几年来某项监测数据的月平均值变化等等,为监测站领导决策提供科学依据。系统生成报表功能强大,除自身已包含众多报表外,可迅速生成word下各种客户要求的监测报表,并且查阅维护方便。系统作为平台拓展性强,可以融合其他系统与平台上,并且后期功能升级方便不影响前期功能。目前系统已经在多个地方监测站运行,从使用效果来看是比较实用的。

纬度数据库所描述的关系模式就是关系的描写关系模式,首先描绘与关系对应的两个维度的表结构,这些关系中都包含着一些属性,这些属性都来自于固定的领域,以及与域之间的映象关系。 

关系是n个域的笛卡儿积的子集,组成关系的元组必须是笛卡儿积中使n目谓词为真的元组,所有有可能的关系必须满足非常完整并且基础的约束条件,而关系模式也要把这个约束条件描述出来。

在这其中关系模式和关系的区别就在于关系模式,主要就是描述一些数据结构的语句意思,而关系是一个数据的集合,是关系的值,是关系模式的一个关系实例。

数据库维度的基本概念:

1、多维数据集。多维数据集是联机分析处理(OLAP)中的主要对象,是一项可对数据仓库中的数据进行快速访问的技术。多维数据集是一个数据集合,通常从数据仓库的子集构造,并组织和汇总成一个由一组维度和度量值定义的多维结构。

2、xx(dimension)是多维数据集的结构性特性。它们是事实数据表中用来描述数据的分类的有组织层次结构(级别)。这些分类和级别描述了一些相似的成员集合,用户将基于这些成员集合进行分析。

3、度量值。在多维数据集中,度量值是一组值,这些值基于多维数据集的事实数据表中的一列,而且通常为数字。此外,度量值是所分析的多维数据集的中心值。

即,度量值是最终用户浏览多维数据集时重点查看的数字数据。您所选择的度量值取决于最终用户所请求的信息类型。一些常见的度量值有sales、cost、expenditures和productioncount等。

4、元数据。不同OLAP组件中的数据和应用程序的结构模型。元数据描述OLTP数据库中的表、数据仓库和数据集市中的多维数据集这类对象,还记录哪些应用程序引用不同的记录块。

5、级别。级别是维度层次结构的一个元素。级别描述了数据的层次结构,从数据的最高(汇总程度最大)级别直到最低(最详细)级别。

6、数据挖掘。数据挖掘使您得以定义包含分组和预测规则的模型,以便应用于关系数据库或多维OLAP数据集中的数据。之后,这些预测模型便可用于自动执行复杂的数据分析,以找出帮助识别新机会并选择有获胜把握的机会的趋势。

7、多维OLAP(MOLAP)。MOLAP存储模式使得分区的聚合和其源数据的复本以多维结构存储在分析服务器计算机上。根据分区聚合的百分比和设计,MOLAP存储模式为达到最快查询响应时间提供了潜在可能性。总而言之,MOLAP更加适合于频繁使用的多维数据集中的分区和对快速查询响应的需要。

8、关系OLAP(ROLAP)。ROLAP存储模式使得分区的聚合存储在关系数据库的表(在分区数据源中指定)中。但是,可为分区数据使用ROLAP存储模式,而不在关系数据库中创建聚合。

9、数据钻取。最终用户从常规多维数据集、虚拟多维数据集或连接多维数据集中选择单个单元,并从该单元的源数据中检索结果集以获得更详细的信息,这个操作过程就是数据钻取。

10、数据挖掘模型。数据挖掘使您得以定义包含分组和预测规则的模型,以便应用于关系数据库或多维OLAP数据集中的数据。之后,这些预测模型便可用于自动执行复杂的数据分析,以找出帮助识别新机会并选择有获胜把握的机会的趋势。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/27044.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-02-17
下一篇2023-02-17

发表评论

登录后才能评论

评论列表(0条)

    保存