数据库集群环境中,每台服务器中数据一致吗?

数据库集群环境中,每台服务器中数据一致吗?,第1张

每台服务器中数据是不一致的。\x0d\x0a1、集群技术主要是解决单一服务器计算能力、存储能力、网络能力等指标低下的问题;\x0d\x0a2、集群环境的数据库是将数据切片后分散存储到每一个服务器,每个数据库服务器只保存整体数据库的一部分;\x0d\x0a\x0d\x0a3、集群数据库后每一台主机对数据分别计算合并结果,最后返回给客户;\x0d\x0a这样的数据库有:MySQL集群、postgresql 、greenplum等。

集群主要分成三大类 (高可用集群, 负载均衡集群,科学计算集群)

高可用集群( High Availability Cluster)

负载均衡集群(Load Balance Cluster)

科学计算集群(High Performance Computing Cluster)

1、高可用集群(High Availability Cluster)

常见的就是2个节点做成的HA集群,有很多通俗的不科学的名称,比如”双机热备”, “双机互备”, “双机”。高可用集群解决的是保障用户的应用程序持续对外提供服务的能力。 (请注意高可用集群既不是用来保护业务数据的,保护的是用户的业务程序对外不间断提供服务,把因软件/硬件/人为造成的故障对业务的影响降低到最小程度)。

2、负载均衡集群(Load Balance Cluster)

负载均衡系统:集群中所有的节点都处于活动状态,它们分摊系统的工作负载。一般Web服务器集群、数据库集群和应用服务器集群都属于这种类型。

负载均衡集群一般用于相应网络请求的网页服务器,数据库服务器。这种集群可以在接到请求时,检查接受请求较少,不繁忙的服务器,并把请求转到这些服务器上。从检查其他服务器状态这一点上看,负载均衡和容错集群很接近,不同之处是数量上更多。

3、科学计算集群(High Performance Computing Cluster)

高性能计算(High Perfermance Computing)集群,简称HPC集群。这类集群致力于提供单个计算机所不能提供的强大的计算能力。

高性能计算分类: 

3.1、高吞吐计算(High-throughput Computing)

有一类高性能计算,可以把它分成若干可以并行的子任务,而且各个子任务彼此间没有什么关联。象在家搜寻外星人( SETI@HOME – Search for Extraterrestrial Intelligence at Home )就是这一类型应用。

这一项目是利用Internet上的闲置的计算资源来搜寻外星人。SETI项目的服务器将一组数据和数据模式发给Internet上参加SETI的计算节点,计算节点在给定的数据上用给定的模式进行搜索,然后将搜索的结果发给服务器。服务器负责将从各个计算节点返回的数据汇集成完整的 数据。因为这种类型应用的一个共同特征是在海量数据上搜索某些模式,所以把这类计算称为高吞吐计算。

所谓的Internet计算都属于这一类。按照 Flynn的分类,高吞吐计算属于SIMD(Single Instruction/Multiple Data)的范畴。

3.2、分布计算(Distributed Computing)

另一类计算刚好和高吞吐计算相反,它们虽然可以给分成若干并行的子任务,但是子任务间联系很紧密,需要大量的数据交换。按照Flynn的分类,分布式的高性能计算属于MIMD(Multiple Instruction/Multiple Data)的范畴。

下面说说这几种集群的应用场景:

高可用集群这里不多作说明。

想Dubbo是比较偏向于负载均衡集群,用过的猿友应该知道(不知道的可以自行了解一下),Dubbo同一个服务是可以有多个提供者的,当一个消费者过来,它要消费那个提供者,这里是有负载均衡机制在里面的。

搜索引擎Elasticsearch比较偏向于科学计算集群的分布计算。

而到这里,可能不少猿友都知道,集群的一些术语:集群容错、负载均衡。

我们以Dubbo为例:

集群容错(http://dubbo.io/User+Guide-zh.htm#UserGuide-zh-%E9%9B%86%E7%BE%A4%E5%AE%B9%E9%94%99)

Dubbo提供了这些容错策略:

集群容错模式:

可以自行扩展集群容错策略,参见:集群扩展

Failover Cluster

失败自动切换,当出现失败,重试其它服务器。(缺省)

通常用于读操作,但重试会带来更长延迟。

可通过retries="2"来设置重试次数(不含第一次)。

Failfast Cluster

快速失败,只发起一次调用,失败立即报错。

通常用于非幂等性的写操作,比如新增记录。

Failsafe Cluster

失败安全,出现异常时,直接忽略。

通常用于写入审计日志等操作。

Failback Cluster

失败自动恢复,后台记录失败请求,定时重发。

通常用于消息通知操作。

Forking Cluster

并行调用多个服务器,只要一个成功即返回。

通常用于实时性要求较高的读操作,但需要浪费更多服务资源。

可通过forks="2"来设置最大并行数。

Broadcast Cluster

广播调用所有提供者,逐个调用,任意一台报错则报错。(2.1.0开始支持)

通常用于通知所有提供者更新缓存或日志等本地资源信息。

负载均衡(http://dubbo.io/User+Guide-zh.htm#UserGuide-zh-%E8%B4%9F%E8%BD%BD%E5%9D%87%E8%A1%A1)

Dubbo提供了这些负载均衡策略:

Random LoadBalance

随机,按权重设置随机概率。

在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。

RoundRobin LoadBalance

轮循,按公约后的权重设置轮循比率。

存在慢的提供者累积请求问题,比如:第二台机器很慢,但没挂,当请求调到第二台时就卡在那,久而久之,所有请求都卡在调到第二台上。

LeastActive LoadBalance

最少活跃调用数,相同活跃数的随机,活跃数指调用前后计数差。

使慢的提供者收到更少请求,因为越慢的提供者的调用前后计数差会越大。

ConsistentHash LoadBalance

一致性Hash,相同参数的请求总是发到同一提供者。

当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。

算法参见:http://en.wikipedia.org/wiki/Consistent_hashing。

缺省只对第一个参数Hash,如果要修改,请配置<dubbo:parameter key="hash.arguments" value="0,1" />

缺省用160份虚拟节点,如果要修改,请配置<dubbo:parameter key="hash.nodes" value="320" />

现在比较大型点的系统基本上是AP+DB的架构: AP指应用程序,DB指数据库端

AP放在一个服务器上,DB放在另一个服务器上

当一个系统比较大,访问的用户数量比较多的时候,比如QQ,上亿用户.

这时一个服务器就吃不消了,这样就想到多个服务器跑同一个AP应用.

DB端也一样.

linux集群 指的就是多个服务器跑同一个AP应用,系统管理员的工作

数据库集群 指的就是多个服务器跑同一个DB数据库.数据库管理员的工作

linux集群基础就要熟悉linux系统.

数据库集群基础就要熟悉具体的数据库如oracle,db2,sysbase.mysql.等

0基础可以学,只是要花时间.0基础想搞到集群估计得花3个月时间.这还是要有环境的,有人指导才行.


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/277643.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-20
下一篇2023-04-20

发表评论

登录后才能评论

评论列表(0条)

    保存