大数据数量庞大,格式多样化。大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。
一、大数据建设思路
1)数据的获得
大数据产生的根本原因在于感知式系统的广泛使用。随着技术的发展,人们已经有能力制造极其微小的带有处理功能的传感器,并开始将这些设备广泛的布置于社会的各个角落,通过这些设备来对整个社会的运转进行监控。这些设备会源源不断的产生新数据,这种数据的产生方式是自动的。因此在数据收集方面,要对来自网络包括物联网、社交网络和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。
2)数据的汇集和存储
互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了
数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类信息系统的数据交换和数据共享。 数据存储要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。
3)数据的管理
大数据管理的技术也层出不穷。在众多技术中,有6种数据管理技术普遍被关注,即分布式存储与计算、内存数据库技术、列式数据库技术、云数据库、非关系型的数据库、移动数据库技术。其中分布式存储与计算受关注度最高。上图是一个图书数据管理系统。
4)数据的分析
数据分析处理:有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。大数据的处理类型很多,主要的处理模式可以分为流处理和批处理两种。批处理是先存储后处理,而流处理则是直接处理数据。挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。
5)大数据的价值:决策支持系统
大数据的神奇之处就是通过对过去和现在的数据进行分析,它能够精确预测未来;通过对组织内部的和外部的数据整合,它能够洞察事物之间的相关关系;通过对海量数据的挖掘,它能够代替人脑,承担起企业和社会管理的职责。
6)数据的使用
大数据有三层内涵:一是数据量巨大、来源多样和类型多样的数据集;二是新型的数据处理和分析技术;三是运用数据分析形成价值。大数据对科学研究、经济建设、社会发展和文化生活等各个领域正在产生革命性的影响。大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。
二、大数据基本架构
基于上述大数据的特征,通过传统IT技术存储和处理大数据成本高昂。一个企业要大力发展大数据应用首先需要解决两个问题:一是低成本、快速地对海量、多类别的数据进行抽取和存储;二是使用新的技术对数据进行分析和挖掘,为企业创造价值。因此,大数据的存储和处理与云计算技术密不可分,在当前的技术条件下,基于廉价硬件的分布式系统(如Hadoop等)被认为是最适合处理大数据的技术平台。
Hadoop是一个分布式的基础架构,能够让用户方便高效地利用运算资源和处理海量数据,目前已在很多大型互联网企业得到了广泛应用,如亚马逊、Facebook和Yahoo等。其是一个开放式的架构,架构成员也在不断扩充完善中,通常架构如图2所示:
Hadoop体系架构
(1)Hadoop最底层是一个HDFS(Hadoop Distributed File System,分布式文件系统),存储在HDFS中的文件先被分成块,然后再将这些块复制到多个主机中(DataNode,数据节点)。
(2)Hadoop的核心是MapReduce(映射和化简编程模型)引擎,Map意为将单个任务分解为多个,而Reduce则意为将分解后的多任务结果汇总,该引擎由JobTrackers(工作追踪,对应命名节点)和TaskTrackers(任务追踪,对应数据节点)组成。当处理大数据查询时,MapReduce会将任务分解在多个节点处理,从而提高了数据处理的效率,避免了单机性能瓶颈限制。
(3)Hive是Hadoop架构中的数据仓库,主要用于静态的结构以及需要经常分析的工作。Hbase主要作为面向列的数据库运行在HDFS上,可存储PB级的数据。Hbase利用MapReduce来处理内部的海量数据,并能在海量数据中定位所需的数据且访问它。
(4)Sqoop是为数据的互操作性而设计,可以从关系数据库导入数据到Hadoop,并能直接导入到HDFS或Hive。
(5)Zookeeper在Hadoop架构中负责应用程序的协调工作,以保持Hadoop集群内的同步工作。
(6)Thrift是一个软件框架,用来进行可扩展且跨语言的服务的开发,最初由Facebook开发,是构建在各种编程语言间无缝结合的、高效的服务。
Hadoop核心设计
Hbase——分布式数据存储系统
Client:使用HBase RPC机制与HMaster和HRegionServer进行通信
Zookeeper:协同服务管理,HMaster通过Zookeepe可以随时感知各个HRegionServer的健康状况
HMaster: 管理用户对表的增删改查操作
HRegionServer:HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据
HRegion:Hbase中分布式存储的最小单元,可以理解成一个Table
HStore:HBase存储的核心。由MemStore和StoreFile组成。
HLog:每次用户操作写入Memstore的同时,也会写一份数据到HLog文件
结合上述Hadoop架构功能,大数据平台系统功能建议如图所示:
应用系统:对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量数据扑面而至。于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。
数据平台:借助大数据平台,未来的互联网络将可以让商家更了解消费者的使用**惯,从而改进使用体验。基于大数据基础上的相应分析,能够更有针对性的改进用户体验,同时挖掘新的商业机会。
数据源:数据源是指数据库应用程序所使用的数据库或者数据库服务器。丰富的数据源是大数据产业发展的前提。数据源在不断拓展,越来越多样化。如:智能汽车可以把动态行驶过程变成数据,嵌入到生产设备里的物联网可以把生产过程和设备动态状况变成数据。对数据源的不断拓展不仅能带来采集设备的发展,而且可以通过控制新的数据源更好地控制数据的价值。然而我国数字化的数据资源总量远远低于美欧,就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这**降低了数据的价值。
三、大数据的目标效果
通过大数据的引入和部署,可以达到如下效果:
1)数据整合
·统一数据模型:承载企业数据模型,促进企业各域数据逻辑模型的统一;
·统一数据标准:统一建立标准的数据编码目录,实现企业数据的标准化与统一存储;
·统一数据视图:实现统一数据视图,使企业在客户、产品和资源等视角获取到一致的信息。
2)数据质量管控
·数据质量校验:根据规则对所存储的数据进行一致性、完整性和准确性的校验,保证数据的一致性、完整性和准确性;
·数据质量管控:通过建立企业数据的质量标准、数据管控的组织、数据管控的流程,对数据质量进行统一管控,以达到数据质量逐步完善。
3)数据共享
·消除网状接口,建立大数据共享中心,为各业务系统提供共享数据,降低接口复杂度,提高系统间接口效率与质量;
·以实时或准实时的方式将整合或计算好的数据向外系统提供。
4)数据应用
·查询应用:平台实现条件不固定、不可预见、格式灵活的按需查询功能;
·固定报表应用:视统计维度和指标固定的分析结果的展示,可根据业务系统的需求,分析产生各种业务报表数据等;
·动态分析应用:按关心的维度和指标对数据进行主题性的分析,动态分析应用中维度和指标不固定。
四、总结
基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。
web应用服务器是互联网时代最为重要之一的底层支持。它处理相应的应用访问请求,并为前端提供相应的展示数据。
不同的web应用服务器实现性能不同,大型网站服务器可以每秒处理几万到几十万的应用请求,中小型网站服务器可能会因为每秒几千次请求停机。
从架构的角度上而言,web-server的升级是一个迭代的过程,只有现在的应用服务器无法满足网站的访问量,才会在此之上进行优化。对于一名好的架构师而言,落地和防灾、可扩展是优先需要考虑的相关事宜。
首先要说的是软件开发是一个确定性的事件, 有章可循,有理可溯 ,任何现象都是可以被解释的,这是入门级程序员和高级程序员的区别之处。
我们以这种思路自顶向下去分析解决问题。
以主流的JavaEE为例,传统的应用开发两个较为核心的工作内容是:
这可能会涉及持续化集成、自动化测试、测试驱动开发概念。
在这之后,可能还会存在的工作是:
在这个过程中,可能会涉及封装、基类、工具类、反射、泛型的概念。
从上面可以看出,软件开发是一件团队合作的事情。应该由 不同的人员去从事不同的事情 。传统项目的分工基本如下(基于个人主观猜测):
目前比较主流的web应用框架是以spring-boot为主的微服务框架。对于上面说的三个事情而言,重要的是 把其中任何一件事情当作一个工程去做,赋予一个合适的时间周期。 这部分内容在预研过程中非常关键,前期未考虑到的因素后期再修改代价可能为 指数级 。
以spring-boot为主,结合mysql搭建web应用服务器的例子github上有很多,在这里不再赘述。
从客户端传递到服务器,响应时间由以下三个部分组成:
当出现应用响应时间过高这个问题时,对于相关人员,首先需要做的是:
对上面三个部分进行测试,分析它们分别所消耗的时间,然后再对此进行优化。 做到有的放矢,不要四处放枪 。
当我们开发完应用程序之后,该如何进行应用的部署呢?怎样的部署才能够保证服务器的处理时间较短?
下面我们讨论单个tomcatweb应用服务器和多个tomcatweb应用服务器。
通过spring boot 创建web应用有两种方式:war包与jar包。在本文中以war包为例。
servlet解析web请求过程:
tomcat作为servlet容器的一种,管理着部署的多个web应用。tomcat运行架构图如下:
从上图中可以看出:
所以由于每个web应用只创建了一个servlet实例,所以需要线程安全问题。(即servlet中包含静态变量和成员变量的时候会出现线程安全的问题。应该使用局部变量。)
tomcat 并发模型
从单个tomcat运行web应用中可以看出:
java web通过封装servlet屏蔽了服务细节,使web开发人员专注与业务逻辑的实现。这是j2ee能在web开发中有一定地位的原因。
然而,由于servlet的创建和tomcat 多线程的并发处理全部交由tomcat来做,在这一个层次程序员无法做太多的事情,只能对tomcat和jvm进行调优。
万幸的是cpu不是系统性能的瓶颈。但是目前有很多的游戏已经使用goroutine来实现了。因为golang的协程可以开上万个,非常适合多线程的处理。
在一些大型网站中,对这部分性能调优的解决方案有:
第二种方案就引入了多tomcat web应用服务器。它的思路是:
在云计算尚未出现时,负载均衡及容器的维护往往由内部的技术部自行实现,在云计算时代,由于K8S和Docker的出现,使这类问题解决更为容易。
K8S的弹性伸缩,把容器进行拷贝复制,并自动负责负载均衡,可以大大简化其流程。
ps:在K8S上运行的多个tomcat容器是相同的拷贝。
淘宝的例子
从传统的意义上讲,系统的性能瓶颈并不存在于cpu的计算能力,而在于I/O。
所以大型网站架构上通常在思考如何降低I/O的时间。
最常用的降低I/O时间是使用reddis和memcached做缓存,关于这块前辈的经验摘引如下:
安全内容博大精深,关于安全方面相关的一些基本的认知链接如下:
web application security
另外,如果对于java 而言,可以使用一个apache的安全框架
shiro
此外还有一些诸如分布式文件存储、加快服务器脚本运算速度、页面组件分离等都是提高服务器响应的方法。
在web开发中,cookie和seesion经常用到。接下来进行简单的说明。cookie和session主要是用来保存数据及状态。
cookie 和session 的区别:
建议:
cookie和session可以解决跨页面传递数据的问题。
前端跨页面传递数据是一个比较繁琐的问题,依赖于浏览器的架构和实现。cookie和session是一种通用的解决方案。
根据我们关注的角度不同,可以将架构分成三种:
·逻辑架构、软件系统中元件之间的关系,比如用户界面,数据库,外部系统接口,商业逻辑元件,等等。
比如下面就是笔者亲身经历过的一个软件系统的逻辑架构图
图2、一个逻辑架构的例子
从上面这张图中可以看出,此系统被划分成三个逻辑层次,即表象层次,商业层次和数据持久层次。每一个层次都含有多个逻辑元件。比如WEB服务器层次中有HTML服务元件、Session服务元件、安全服务元件、系统管理元件等。
·物理架构、软件元件是怎样放到硬件上的。
比如下面这张物理架构图描述了一个分布于北京和上海的分布式系统的物理架构,图中所有的元件都是物理设备,包括网络分流器、代理服务器、WEB服务器、应用服务器、报表服务器、整合服务器、存储服务器、主机等等。
图3、一个物理架构的例子
·系统架构、系统的非功能性特征,如可扩展性、可靠性、强壮性、灵活性、性能等。
系统架构的设计要求架构师具备软件和硬件的功能和性能的过硬知识,这一工作无疑是架构设计工作中最为困难的工作。
此外,从每一个角度上看,都可以看到架构的两要素:元件划分和设计决定。
首先,一个软件系统中的元件首先是逻辑元件。这些逻辑元件如何放到硬件上,以及这些元件如何为整个系统的可扩展性、可靠性、强壮性、灵活性、性能等做出贡献,是非常重要的信息。
其次,进行软件设计需要做出的决定中,必然会包括逻辑结构、物理结构,以及它们如何影响到系统的所有非功能性特征。这些决定中会有很多是一旦作出,就很难更改的。
根据作者的经验,一个基于数据库的系统架构,有多少个数据表,就会有多少页的架构设计文档。比如一个中等的数据库应用系统通常含有一百个左右的数据表,这样的一个系统设计通常需要有一百页左右的架构设计文档。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)