Hadoop集群及组件

Hadoop集群及组件,第1张

1、重启云主机 hadoop1,node-0001,node-0002,node-0003

2、在 hadoop1 上安装配置 zookeeper,并同步给其他主机

使用zookeeper-3.4.13.tar.gz

所有节点手工启动服务

当所有节点启动完成以后使用命令验证:

/usr/local/zookeeper/bin/zkServer.sh status

手册地址

1、安装配置 kafka,并同步给其他主机

拷贝云盘 public/hadoop/kafka_2.12-2.1.0.tgz 到 hadoop1

2、修改 node-0001,node-0002,node-0003 配置文件并启动服务

3、验证(在不同机器上执行)

购买云主机

hadoop1 上执行

hadoop2 上执行

在 hadoop1 上完成以下文件的配置

1、配置 hadoop-env.sh

2、配置 slaves

3、配置 core-site.xml

4、配置 hdfs-site.xml

5、配置 mapred-site.xml

6、配置 yarn-site.xml

1、重启机器、在 node-0001,node-0002,node-0003 启动 zookeeper

2、清空实验数据并同步配置文件(hadoop1 上执行)

3、在 node-0001,node-0002,node-0003 启动 journalnode 服务

4、初始化(hadoop1 上执行)

5、停止在 node-0001,node-0002,node-0003 上的 journalnode 服务

6、启动集群

Hadoop处在云计算三层模型中的PaaS这一层。

Hadoop处在云计算三层模型中的PaaS这一层。PaaS是指平台即服务。把服务器平台作为一种服务提供的商业模式,通过网络进行程序提供的服务称之为SaaS,是云计算三种服务模式之一。

hadoop2.0已经发布了稳定版本了,增加了很多特性,比如HDFS HA、YARN等。最新的hadoop-2.4.1又增加了YARN HA

注意:apache提供的hadoop-2.4.1的安装包是在32位操作系统编译的,因为hadoop依赖一些C++的本地库,

所以如果在64位的操作上安装hadoop-2.4.1就需要重新在64操作系统上重新编译

(建议第一次安装用32位的系统,我将编译好的64位的也上传到群共享里了,如果有兴趣的可以自己编译一下)

前期准备就不详细说了,课堂上都介绍了

1.修改Linux主机名

2.修改IP

3.修改主机名和IP的映射关系

######注意######如果你们公司是租用的服务器或是使用的云主机(如华为用主机、阿里云主机等)

/etc/hosts里面要配置的是内网IP地址和主机名的映射关系

4.关闭防火墙

5.ssh免登陆

6.安装JDK,配置环境变量等

集群规划:

主机名 IP 安装的软件 运行的进程

HA181 192.168.1.181 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)

HA182 192.168.1.182 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)

HA183 192.168.1.183 jdk、hadoop ResourceManager

HA184 192.168.1.184 jdk、hadoop ResourceManager

HA185 192.168.1.185 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain

HA186 192.168.1.186 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain

HA187 192.168.1.187 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain

说明:

1.在hadoop2.0中通常由两个NameNode组成,一个处于active状态,另一个处于standby状态。Active NameNode对外提供服务,而Standby NameNode则不对外提供服务,仅同步active namenode的状态,以便能够在它失败时快速进行切换。

hadoop2.0官方提供了两种HDFS HA的解决方案,一种是NFS,另一种是QJM。这里我们使用简单的QJM。在该方案中,主备NameNode之间通过一组JournalNode同步元数据信息,一条数据只要成功写入多数JournalNode即认为写入成功。通常配置奇数个JournalNode

这里还配置了一个zookeeper集群,用于ZKFC(DFSZKFailoverController)故障转移,当Active NameNode挂掉了,会自动切换Standby NameNode为standby状态

2.hadoop-2.2.0中依然存在一个问题,就是ResourceManager只有一个,存在单点故障,hadoop-2.4.1解决了这个问题,有两个ResourceManager,一个是Active,一个是Standby,状态由zookeeper进行协调

安装步骤:

1.安装配置zooekeeper集群(在HA185上)

1.1解压

tar -zxvf zookeeper-3.4.5.tar.gz -C /app/

1.2修改配置

cd /app/zookeeper-3.4.5/conf/

cp zoo_sample.cfg zoo.cfg

vim zoo.cfg

修改:dataDir=/app/zookeeper-3.4.5/tmp

在最后添加:

server.1=HA185:2888:3888

server.2=HA186:2888:3888

server.3=HA187:2888:3888

保存退出

然后创建一个tmp文件夹

mkdir /app/zookeeper-3.4.5/tmp

再创建一个空文件

touch /app/zookeeper-3.4.5/tmp/myid

最后向该文件写入ID

echo 1 > /app/zookeeper-3.4.5/tmp/myid

1.3将配置好的zookeeper拷贝到其他节点(首先分别在HA186、HA187根目录下创建一个weekend目录:mkdir /weekend)

scp -r /app/zookeeper-3.4.5/ HA186:/app/

scp -r /app/zookeeper-3.4.5/ HA187:/app/

注意:修改HA186、HA187对应/weekend/zookeeper-3.4.5/tmp/myid内容

HA186:

echo 2 > /app/zookeeper-3.4.5/tmp/myid

HA187:

echo 3 > /app/zookeeper-3.4.5/tmp/myid

2.安装配置hadoop集群(在HA181上操作)

2.1解压

tar -zxvf hadoop-2.4.1.tar.gz -C /weekend/

2.2配置HDFS(hadoop2.0所有的配置文件都在$HADOOP_HOME/etc/hadoop目录下)

#将hadoop添加到环境变量中

vim /etc/profile

export JAVA_HOME=/app/jdk1.7.0_79

export HADOOP_HOME=/app/hadoop-2.4.1

export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin

#hadoop2.0的配置文件全部在$HADOOP_HOME/etc/hadoop下

cd /home/hadoop/app/hadoop-2.4.1/etc/hadoop

2.2.1修改hadoop-env.sh

export JAVA_HOME=/app/jdk1.7.0_79

2.2.2修改core-site.xml

<configuration>

<!-- 指定hdfs的nameservice为ns1 -->

<property>

<name>fs.defaultFS</name>

<value>hdfs://ns1/</value>

</property>

<!-- 指定hadoop临时目录 -->

<property>

<name>hadoop.tmp.dir</name>

<value>/app/hadoop-2.4.1/tmp</value>

</property>

<!-- 指定zookeeper地址 -->

<property>

<name>ha.zookeeper.quorum</name>

<value>HA185:2181,HA186:2181,HA187:2181</value>

</property>

</configuration>

2.2.3修改hdfs-site.xml

<configuration>

<!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致 -->

<property>

<name>dfs.nameservices</name>

<value>ns1</value>

</property>

<!-- ns1下面有两个NameNode,分别是nn1,nn2 -->

<property>

<name>dfs.ha.namenodes.ns1</name>

<value>nn1,nn2</value>

</property>

<!-- nn1的RPC通信地址 -->

<property>

<name>dfs.namenode.rpc-address.ns1.nn1</name>

<value>HA181:9000</value>

</property>

<!-- nn1的http通信地址 -->

<property>

<name>dfs.namenode.http-address.ns1.nn1</name>

<value>HA181:50070</value>

</property>

<!-- nn2的RPC通信地址 -->

<property>

<name>dfs.namenode.rpc-address.ns1.nn2</name>

<value>HA182:9000</value>

</property>

<!-- nn2的http通信地址 -->

<property>

<name>dfs.namenode.http-address.ns1.nn2</name>

<value>HA182:50070</value>

</property>

<!-- 指定NameNode的元数据在JournalNode上的存放位置 -->

<property>

<name>dfs.namenode.shared.edits.dir</name>

<value>qjournal://HA185:8485HA186:8485HA187:8485/ns1</value>

</property>

<!-- 指定JournalNode在本地磁盘存放数据的位置 -->

<property>

<name>dfs.journalnode.edits.dir</name>

<value>/app/hadoop-2.4.1/journaldata</value>

</property>

<!-- 开启NameNode失败自动切换 -->

<property>

<name>dfs.ha.automatic-failover.enabled</name>

<value>true</value>

</property>

<!-- 配置失败自动切换实现方式 -->

<property>

<name>dfs.client.failover.proxy.provider.ns1</name>

<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>

</property>

<!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->

<property>

<name>dfs.ha.fencing.methods</name>

<value>

sshfence

shell(/bin/true)

</value>

</property>

<!-- 使用sshfence隔离机制时需要ssh免登陆 -->

<property>

<name>dfs.ha.fencing.ssh.private-key-files</name>

<value>/home/hadoop/.ssh/id_rsa</value>

</property>

<!-- 配置sshfence隔离机制超时时间 -->

<property>

<name>dfs.ha.fencing.ssh.connect-timeout</name>

<value>30000</value>

</property>

</configuration>

2.2.4修改mapred-site.xml

<configuration>

<!-- 指定mr框架为yarn方式 -->

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

</configuration>

2.2.5修改yarn-site.xml

<configuration>

<!-- 开启RM高可用 -->

<property>

   <name>yarn.resourcemanager.ha.enabled</name>

   <value>true</value>

</property>

<!-- 指定RM的cluster id -->

<property>

   <name>yarn.resourcemanager.cluster-id</name>

   <value>yrc</value>

</property>

<!-- 指定RM的名字 -->

<property>

   <name>yarn.resourcemanager.ha.rm-ids</name>

   <value>rm1,rm2</value>

</property>

<!-- 分别指定RM的地址 -->

<property>

   <name>yarn.resourcemanager.hostname.rm1</name>

   <value>HA183</value>

</property>

<property>

   <name>yarn.resourcemanager.hostname.rm2</name>

   <value>HA184</value>

</property>

<!-- 指定zk集群地址 -->

<property>

   <name>yarn.resourcemanager.zk-address</name>

   <value>HA185:2181,HA186:2181,HA187:2181</value>

</property>

<property>

   <name>yarn.nodemanager.aux-services</name>

   <value>mapreduce_shuffle</value>

</property>

</configuration>

2.2.6修改slaves(slaves是指定子节点的位置,因为要在HA181上启动HDFS、在HA183启动yarn,

所以HA181上的slaves文件指定的是datanode的位置,HA183上的slaves文件指定的是nodemanager的位置)

HA185

HA186

HA187

2.2.7配置免密码登陆

#首先要配置HA181到HA182、HA183、HA184、HA185、HA186、HA187的免密码登陆

#在HA181上生产一对钥匙

ssh-keygen -t rsa

#将公钥拷贝到其他节点,包括自己

ssh-copy-id HA181

ssh-copy-id HA182

ssh-copy-id HA183

ssh-copy-id HA184

ssh-copy-id HA185

ssh-copy-id HA186

ssh-copy-id HA187

#配置HA183到HA184、HA185、HA186、HA187的免密码登陆

#在HA183上生产一对钥匙

ssh-keygen -t rsa

#将公钥拷贝到其他节点

ssh-copy-id HA184

ssh-copy-id HA185

ssh-copy-id HA186

ssh-copy-id HA187

#注意:两个namenode之间要配置ssh免密码登陆,别忘了配置HA182到HA181的免登陆

在HA182上生产一对钥匙

ssh-keygen -t rsa

ssh-copy-id -i HA181

2.4将配置好的hadoop拷贝到其他节点

scp -r /app/hadoop-2.5.1/ HA182:/app/

scp -r /app/hadoop-2.5.1/ HA183:/app/

scp -r /app/hadoop-2.5.1/ HA184:/app/

scp -r /app/hadoop-2.5.1/ HA185:/app/

scp -r /app/hadoop-2.5.1/ HA186:/app/

scp -r /app/hadoop-2.5.1/ HA187:/app/

###注意:严格按照下面的步骤

2.5启动zookeeper集群(分别在HA185、HA186、tcast07上启动zk)

cd /app/zookeeper-3.4.5/bin/

./zkServer.sh start

#查看状态:一个leader,两个follower

./zkServer.sh status

2.6启动journalnode(分别在在HA185、HA186、HA187上执行)

cd /app/hadoop-2.5.1

hadoop-daemon.sh start journalnode

#运行jps命令检验,HA185、HA186、HA187上多了JournalNode进程

2.7格式化ZKFC(在HA181上执行即可) hdfs zkfc -formatZK

2.8格式化HDFS

#在HA181上执行命令:

hdfs namenode -format

#格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里我配置的是/app/hadoop-2.4.1/tmp,然后将/weekend/hadoop-2.4.1/tmp拷贝到HA182的/weekend/hadoop-2.4.1/下。

scp -r tmp/ HA182:/app/hadoop-2.5.1/

##也可以这样,建议hdfs namenode -bootstrapStandby

2.9启动HDFS(在HA181上执行)

sbin/start-dfs.sh

2.10启动YARN(#####注意#####:是在HA183上执行start-yarn.sh,把namenode和resourcemanager分开是因为性能问题,因为他们都要占用大量资源,所以把他们分开了,他们分开了就要分别在不同的机器上启动)

sbin/start-yarn.sh

到此,hadoop-2.4.1配置完毕,可以统计浏览器访问:

http://192.168.1.181:50070

NameNode 'HA181:9000' (active)

http://192.168.1.182:50070

NameNode 'HA182:9000' (standby)

验证HDFS HA

首先向hdfs上传一个文件

hadoop fs -put /etc/profile /profile

hadoop fs -ls /

然后再kill掉active的NameNode

kill -9 <pid of NN>

通过浏览器访问:http://192.168.1.182:50070

NameNode 'HA182:9000' (active)

这个时候HA182上的NameNode变成了active

在执行命令:

hadoop fs -ls /

-rw-r--r--   3 root supergroup       1926 2014-02-06 15:36 /profile

刚才上传的文件依然存在!!!

手动启动那个挂掉的NameNode

sbin/hadoop-daemon.sh start namenode

通过浏览器访问:http://192.168.1.181:50070

NameNode 'HA181:9000' (standby)

验证YARN:

运行一下hadoop提供的demo中的WordCount程序:

hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.4.1.jar wordcount /profile /out

OK,大功告成!!!

CID-74d21742-3e4b-4df6-a99c-d52f703b49c0

测试集群工作状态的一些指令 :

bin/hdfs dfsadmin -report  查看hdfs的各节点状态信息

bin/hdfs haadmin -getServiceState nn1  获取一个namenode节点的HA状态

sbin/hadoop-daemon.sh start namenode  单独启动一个namenode进程

./hadoop-daemon.sh start zkfc   单独启动一个zkfc进程


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/278145.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-20
下一篇2023-04-20

发表评论

登录后才能评论

评论列表(0条)

    保存