采用多线程多核编程,使用事件驱动或异步消息机制,尽量减少阻塞和等待操作(如I/O阻塞、同步等待或计时/超时等)。它的原理如下:
1,多线程多核编程,消除cpu瓶颈。
2,采用IOCP或epoll,利用状态监测和通知方式,消除网络I/O阻塞瓶颈。
3,采用事件驱动或异步消息机制,可以消除不必要的等待操作。
4,如果是Linux,可以采用AIO来消除磁盘I/O阻塞瓶颈。
5,在事件驱动框架或异步消息中统一处理timer事件,变同步为异步,而且可以在一个线程处理无数timer事件。
6,深入分析外部的阻塞来源,消除它。 比如数据库查询较慢,导致服务器处理较慢,并发数上不去,这时就要优化数据库性能。
7,如果与某个其他server通信量很大,导致性能下降较多。 可以考虑把这两个server放在一个主机上,采用共享内存的方式来做IPC通信,可以大大提高性能。
亿万克作为中国战略性新兴产业领军品牌,拥有行业前沿技术,致力于新型数据中心建设,构筑云端安全数字底座,为客户提供集产品研发、生产、部署、运维于一体的服务器及IT系统解决方案业务,产品和技术完全拥有自主知识产权,为客户提供全方位安全自主可控技术服务保障。
有什么方法衡量服务器并发处理能力1. 吞吐率
吞吐率,单位时间里服务器处理的最大请求数,单位req/s
从服务器角度,实际并发用户数的可以理解为服务器当前维护的代表不同用户的文件描述符总数,也就是并发连接数。服务器一般会限制同时服务的最多用户数,比如apache的MaxClents参数。
这里再深入一下,对于服务器来说,服务器希望支持高吞吐率,对于用户来说,用户只希望等待最少的时间,显然,双方不能满足,所以双方利益的平衡点,就是我们希望的最大并发用户数。
2. 压力测试
有一个原理一定要先搞清楚,假如100个用户同时向服务器分别进行10个请求,与1个用户向服务器连续进行1000次请求,对服务器的压力是一样吗?实际上是不一样的,因对每一个用户,连续发送请求实际上是指发送一个请求并接收到响应数据后再发送下一个请求。这样对于1个用户向服务器连续进行1000次请求, 任何时刻服务器的网卡接收缓冲区中只有1个请求,而对于100个用户同时向服务器分别进行10个请求,服务器的网卡接收缓冲区最多有100个等待处理的请求,显然这时的服务器压力更大。
压力测试前提考虑的条件
并发用户数: 指在某一时刻同时向服务器发送请求的用户总数(HttpWatch)
总请求数
请求资源描述
请求等待时间(用户等待时间)
用户平均请求的等待时间
服务器平均请求处理的时间
硬件环境
压力测试中关心的时间又细分以下2种:
用户平均请求等待时间(这里暂不把数据在网络的传输时间,还有用户PC本地的计算时间计算入内)
服务器平均请求处理时间
用户平均请求等待时间主要用于衡量服务器在一定并发用户数下,单个用户的服务质量;而服务器平均请求处理时间就是吞吐率的倒数,一般来说,用户平均请求等待时间 = 服务器平均请求处理时间 * 并发用户数
怎么提高服务器的并发处理能力
1. 提高CPU并发计算能力
服务器之所以可以同时处理多个请求,在于操作系统通过多执行流体系设计使得多个任务可以轮流使用系统资源,这些资源包括CPU,内存以及I/O. 这里的I/O主要指磁盘I/O, 和网络I/O。
多进程 &多线程
多执行流的一般实现便是进程,多进程的好处可以对CPU时间的轮流使用,对CPU计算和IO操作重叠利用。这里的IO主要是指磁盘IO和网络IO,相对CPU而言,它们慢的可怜。
而实际上,大多数进程的时间主要消耗在I/O操作上。现代计算机的DMA技术可以让CPU不参与I/O操作的全过程,比如进程通过系统调用,使得CPU向网卡或者磁盘等I/O设备发出指令,然后进程被挂起,释放出CPU资源,等待I/O设备完成工作后通过中断来通知进程重新就绪。对于单任务而言,CPU大部分时间空闲,这时候多进程的作用尤为重要。
多进程不仅能够提高CPU的并发度。其优越性还体现在独立的内存地址空间和生命周期所带来的稳定性和健壮性,其中一个进程崩溃不会影响到另一个进程。
但是进程也有如下缺点:
fork()系统调用开销很大: prefork
进程间调度和上下文切换成本: 减少进程数量
庞大的内存重复:共享内存
IPC编程相对比较麻烦
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)