p值是什么意思?

p值是什么意思?,第1张

P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。

P值(P value)就是当原假设为真时,比所得到的样本观察结果更极端的结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。

发展史:

R·A·Fisher(1890-1962)作为一代假设检验理论的创立者,在假设检验中首先提出P值的概念。他认为假设检验是一种程序,研究人员依照这一程序可以对某一总体参数形成一种判断。也就是说,他认为假设检验是数据分析的一种形式,是人们在研究中加入的主观信息。

(当时这一观点遭到了Neyman-Pearson的反对,他们认为假设检验是一种方法,决策者在不确定的条件下进行运作,利用这一方法可以在两种可能中作出明确的选择,而同时又要控制错误发生的概率。这两种方法进行长期且痛苦的论战。虽然Fisher的这一观点同样也遭到了现代统计学家的反对,但是他对现代假设检验的发展作出了巨大的贡献。)

P值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P <0.05 为有统计学差异, P<0.01 为有显著统计学差异,P<0.001为有极其显著的统计学差异。

P<0.05时,认为差异有统计学意义”或者“显著性水平α=0.05”,指的是如果本研究统计推断得到的差异有统计学意义,那么该结果是“假阳性”的概率小于0.05。

扩展资料:

P值的计算:

一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说:

左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X <C}

右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X >C}

双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X >C} (当C位于分布曲线的右端时) 或P = 2P{ X<C} (当C 位于分布曲线的左端时) 。

若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| >C} 。

计算出P值后,将给定的显著性水平α与P 值比较,就可作出检验的结论:

如果α >P值,则在显著性水平α下拒绝原假设。

如果α ≤ P值,则在显著性水平α下不拒绝原假设。

在实践中,当α = P值时,也即统计量的值C刚好等于临界值,为慎重起见,可增加样本容量,重新进行抽样检验。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/285412.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-22
下一篇2023-04-22

发表评论

登录后才能评论

评论列表(0条)

    保存