采用OLS的回归分析方法存在几方面的限制:
(1)不允许有多个因变量或输出变量
(2)中间变量不能包含在与预测因子一样的单一模型中
(3)预测因子假设为没有测量误差
(4)预测因子间的多重共线性会妨碍结果解释
(5)结构方程模型不受这些方面的限制
SEM的优点:
(1)SEM程序同时提供总体模型检验和独立参数估计检验;
(2)回归系数,均值和方差同时被比较,即使多个组间交叉;
(3)验证性因子分析模型能净化误差,使得潜变量间的关联估计较少地被测量误差污染;
(4)拟合非标准模型的能力,包括灵活处理追踪数据,带自相关误差结构的数据库(时间序列分析),和带非正态分布变量和缺失数据的数据库。
构方程模型最为显著的两个特点是:
(1)评价多维的和相互关联的关系;
(2)能够发现这些关系中没有察觉到的概念关系,而且能够在评价的过程中解释测量误差。
1、最小二乘法的典型应用是求解一套x和y的成对数据对应的曲线(或者直线)方程。
其思想是:设y和x之间的关系可以用一个公式在表示,但其系数为待定系数。然后,将各个点的实测数据与计算求得的数据相减,得到“误差”或者不符值(有正有负,但其平方都是正的),将这些不符值的平方相加,得到总的“误差”。通过调整公式中的各个系数,使得误差平方和最小,那么就确定了y和x之间的方程的最好结果。求解最小二乘问题的过程中没有提及概率问题。
2、而极大似然估计值,是用于概率领域的一种方法,和最小二乘法是两个领域的。这种方法是应用求极大值的方法,让某一个公式求导值为0,再根据情况判断该极值是否是合乎要求。极大似然估计法可以用于正态分布中 μ, σ2的极大似然估计。极大似然估计法就是要选取类似的数值作为参数的估计值,使所选取的样本在被选的总体中出现的可能性为最大。
算法不同,需要看软件对数据的要求。我找到一篇博客,你看下:
结构方程建模中的PLS和LISREL方法比较
第一,分布假设不同。PLS为了处理缺乏理论知识的复杂问题,采取“软”方法,避免LISREL模型严格的“硬”假设。这样,不论模型大小,PLS方法都可以得到“瞬时估计(instant estimation)”,并得到渐进正确的估计,即PLS方法没有分布要求,而LISREL方法假设显变量的联合分布为多元正态。
第二,准确性取向不同。PLS估计在样本量很大和每个隐变量的显变量很多时,是一致(consistency)和基本一致(consistency at large)的,但LISREL估计在大样本时是最优的(置信区间渐近最小)。最优性包括一致性,但一致性不包括最优性。因此,PLS和LISREL对同一参数的估计都在一致性的范围内。两种估计的差别不可能、也不应该很大。
第三,假设检验不同。PLS方法采用Stone(1974)和Geisser(1974)的交互验证(cross-validation)方法检验,考察因果预测关系(8)。LISREL方法一般使用似然比检验,考察观测矩阵S和理论矩阵Σ的拟合程度。
不是我写的,你去感谢博主吧:
来自:http://blog.163.com/fjm82@126/blog/static/3335303020061014111026311/
SEM简单介绍,以下资料来源
因果关系:SEM一般用于建立因果关系模型,但是本身却并不能阐明模型的因果关系。
一般应用于:测量错误、错漏的数据、中介模型(mediation model)、差异分析。
历史:SEM 包括了 回归分析,路径分析(wright, 1921),验证性因子分析(confirmatory factor analysis)(Joreskog, 1969).
SEM也被称为 协方差结构模型(covariance structure modelling),协方差结构分析和因果模型。
因果关系:
究竟哪一个是“真的”? 在被假设的因果变量中其实有一个完整的因果链。
举一个简单的例子: 吃糖果导致蛀牙。这里涉及2个变量,“吃糖果”和“蛀牙”,前者是因,后者是果。 如果上一个因果关系成立,那将会形成一个因果机制,也许会出现这样的结构:
3. 这时还有可能出现更多的潜在变量:
这里我又举另外一个例子,回归模型
在这里,回归模型并不能很好的描述出因果次序,而且也不能轻易的识别因果次序或者未测量的因子。这也是为什么在国外学术界SEM如此流行的原因。
我们在举另外一个例子“路径分析”
路径分析能让我们用于条件模型(conditional relationships),上图中的模型是一种调解型模型或者中介模型,在这里Z 是作为一个中介调节者同时调节X和Y这两个变量的关系。
在这里我们总结一下:
回归分析简单的说就是:X真的影响Y 吗?
路径分析:为什么/如何 X 会影响Y? 是通过其他潜在变量Z 来达到的吗?例子:刷牙(X)减少蛀牙(Y)通过减少细菌的方法(Z)。------测量和测试中介变量(例如上图中的Z变量)可以帮助评估因果假设。
在这里要提一下因素模型(factor model)
在这个模型当中,各个变量有可能由于受到未被观察到的变量所影响,变得相互有内在的联系,一般来说那些变量都很复杂、混乱,而且很多变量是不能直接被观察到的。
举个例子:“保龄球俱乐部的会员卡”和“本地报纸阅读”,是被观察到的变量,而“社会资产”则是未被观察到的变量。另一个例子:“房屋立法”和“异族通婚”是被观察到的变量,而“种族偏见”是未被观察到的变量。
相互关系并不完全由被观察到的变量的因果关系所导致,而是由于那些潜在的变量而导致。
这些被观察到变量(y1--y4)也有可能由一个潜在的变量(F)所影响。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)