SEM扫描电镜图怎么看,图上各参数都代表什么意思

SEM扫描电镜图怎么看,图上各参数都代表什么意思,第1张

1、放大率:

与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制放大率的。如果需要更高的放大率,只需要扫描更小的一块面积就可以了。放大率由屏幕/照片面积除以扫描面积得到。

所以,SEM中,透镜与放大率无关。

2、场深:

在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。

3、作用体积:

电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。

4、工作距离:

工作距离指从物镜到样品最高点的垂直距离。

如果增加工作距离,可以在其他条件不变的情况下获得更大的场深。如果减少工作距离,则可以在其他条件不变的情况下获得更高的分辨率。通常使用的工作距离在5毫米到10毫米之间。

5、成象:

次级电子和背散射电子可以用于成象,但后者不如前者,所以通常使用次级电子。

6、表面分析:

欧革电子、特征X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。但由于电子束只能穿透样品表面很浅的一层(参见作用体积),所以只能用于表面分析。

表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在但耗时太长。

观察方法:

如果图像是规则的(具螺旋对称的活体高分子物质或结晶),则将电镜像放在光衍射计上可容易地观察图像的平行周期性。

尤其用光过滤法,即只留衍射像上有周期性的衍射斑,将其他部分遮蔽使重新衍射,则会得到背景干扰少的鲜明图像。

扩展资料:

SEM扫描电镜图的分析方法:

从干扰严重的电镜照片中找出真实图像的方法。在电镜照片中,有时因为背景干扰严重,只用肉眼观察不能判断出目的物的图像。

图像与其衍射像之间存在着数学的傅立叶变换关系,所以将电镜像用光度计扫描,使各点的浓淡数值化,将之进行傅立叶变换,便可求出衍射像〔衍射斑的强度(振幅的2乘)和其相位〕。

将其相位与从电子衍射或X射线衍射强度所得的振幅组合起来进行傅立叶变换,则会得到更鲜明的图像。此法对属于活体膜之一的紫膜等一些由二维结晶所成的材料特别适用。

扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。

参考资料:百度百科-扫描电子显微镜

简单的讲,SEM是用来观察材料表面形貌的,XRD是用来检测材料晶体结构的,使用完全不同的仪器。具体说明如下:

SEM

是scanning electron microscope的缩写,指扫描电子显微镜是一种常用的材料分析手段。

扫描电子显微镜于20世纪60年代问世,用来观察标本的表面结构。其工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。图像为立体形象,反映了标本的表面结构。为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束的轰击下发出次级电子信号。

目前扫描电镜的分辨力为6~10nm,人眼能够区别荧光屏上两个相距0.2mm的光点,则扫描电镜的最大有效放大倍率为0.2mm/10nm=20000X。

它是依据电子与物质的相互作用。当一束高能的人射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时,也可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。扫描电子显微镜正是根据上述不同信息产生的机理,采用不同的信息检测器,使选择检测得以实现。如对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息;对x射线的采集,可得到物质化学成分的信息。正因如此,根据不同需求,可制造出功能配置不同的扫描电子显微镜。

XRD

即X-ray diffraction ,X射线衍射,通关对材料进行X射线衍射,分析其衍射图谱,获得材料的成分、材料内部原子或分子的结构或形态等信息的研究手段。

X射线是一种波长很短(约为20~0.06┱)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离(10-8nm)相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布喇格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式——布喇格定律:

2d sinθ=nλ

式中λ为X射线的波长,n为任何正整数,又称衍射级数。其上限为以下条件来表示:

nmax=2dh0k0l0/λ,

dh0k0l0<λ/2

只有那些间距大于波长一半的面族才可能给出衍射,以此求纳米粒子的形貌。

当X射线以掠角θ(入射角的余角)入射到某一点阵平面间距为d的原子面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。布喇格定律简洁直观地表达了衍射所必须满足的条件。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布喇格条件的反射面得到反射,测出θ后,利用布喇格公式即可确定点阵平面间距、晶胞大小和类型根据衍射线的强度,还可进一步确定晶胞内原子的排布。这便是X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法的理论基础。而在测定单晶取向的劳厄法中,所用单晶样品保持固定不变动(即θ不变),以辐射束的波长作为变量来保证晶体中一切晶面都满足布喇格条件,故选用连续X射线束。如果利用结构已知的晶体,则在测定出衍射线的方向θ后,便可计算X射线的波长,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。

X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是体心立方结构,β-Fe并不是一种新相而铁中的α—→γ转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究,对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。在金属中的主要应用有以下方面:

物相分析 是 X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应用。

精密测定点阵参数 常用于相图的固态溶解度曲线的测定。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可得到单位晶胞原子数,从而确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。

取向分析 包括测定单晶取向和多晶的结构(见择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。

晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。

宏观应力的测定 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测量点阵平面在不同方向上的间距的变化,可计算出残留应力的大小和方向。

对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。

合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。

结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。

液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。

特殊状态下的分析 在高温、低温和瞬时的动态分析。

此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研究近完整晶体中的缺陷如位错线等,也得到了重视。

X射线分析的新发展:金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。

X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域.

X射线是波长介于紫外线和γ射线间的电磁辐射。X射线管是具有阴极和阳极的真空管,阴极用钨丝制成,通电后可发射热电子,阳极(就称靶极)用高熔点金属制成(一般用钨,用于晶体结构分析的X射线管还可用铁、铜、镍等材料)。用几万伏至几十万伏的高压加速电子,电子束轰击靶极,X射线从靶极发出。电子轰击靶极时会产生高温,故靶极必须用水冷却。

XRDX-射线衍射(Wide Angle X-ray Diffraction)主要是对照标准谱图分析纳米粒子的组成,分析粒径,结晶度等。

应用时应先对所制样品的成分进行确认。在确定后,查阅相关手册标准图谱,以确定所制样品是否为所得。

通常的置换镀金(IG)液能够腐蚀化学镀镍(EN)层,其结果是形成置换金层,并将磷残留在化学镀镍层表面,使EN/IG两层之间容易形成黑色(焊)区(Black pad),它在焊接时常造成焊接不牢(Solder Joint Failure)金层利落(Peeling)。延长镀金的时间虽可得加较厚的金层,但金层的结合力和键合性能迅速下降。本文比较了各种印制板镀金工艺组合的钎焊性和键合功能,探讨了形成黑色焊区的条件与机理,同时发现用中性化学镀金是解决印制板化学镀镍/置换镀金时出现黑色焊区问题的有效方法,也是取代电镀镍/电镀软金工艺用于金线键合(Gold Wire Bonding)的有效工艺。

一 引言

随着电子设备的线路设计越来越复杂,线路密度越来越高,分离的线路和键合点也越来越多,许多复杂的印制板要求它的最后表面化处理(Final Surface Finishing)工艺具有更多的功能。即制造工艺不仅可制成线更细,孔更小,焊区更平的镀层,而且所形成的镀层必须是可焊的、可键合的、长寿的,并具有低的接触电阻。[1]

目前适于金线键合的镀金工艺是电镀镍/电镀软金工艺,它不仅镀层软,纯度高(最高可达99.99%),而且具有优良的钎焊性和金线键合功能。遗憾的是它属于电镀型,不能用于非导通线路的印制板,而要将多层板的所有线路光导通,然后再复原,这需要花大量的人力和物力,有时几乎是不可能实现的。[2]另外电镀金层的厚度会随电镀时的电流密度而异,为保证最低电流处的厚度,电流密度高处的镀层就要超过所要求的厚度,这不仅提高了成本,也为随后的表面安装带来麻烦。

化学镀镍/置换镀金工艺是全化学镀工艺,它可用于非导通线路的印制板。这种镀层组合的钎焊性优良,但它只适于铝线键合而不适于金线键合。通常的置换镀金液是弱酸性的,它能腐蚀化学镀镍磷层(Ni2P)而形成置换镀金层,并将磷残留在化学镀镍层表面,形成黑色(焊)区(Black pad),它在焊接焊常造成焊接不牢(Solder Joint Failure)或金层脱落(Peeling)。试图通过延长镀金时间,提高金层厚度来解决这些问题,结果反而使金层的结合力和键合功能明显下降。[3]

化学镀镍/化学镀钯/置换镀金工艺也是全化学镀工艺,可用于非导通线路的印制板,而且键合功能优良,然而钎焊性并不十分好。开发这一新工艺的早期目的是用价廉的钯代替金,然而近年来钯价猛涨,已达金价的3倍多,因此应用会越来越少。

化学镀金是和还原剂使金络离子直接被还原为金属金,它并非通过腐蚀化学镀镍磷合金层来沉积金。因此用化学镀镍/化学镀金工艺来取代化学镀镍/置换镀金工艺,就可以从根本上消除因置换反应而引起的黑色(焊)区问题。然而普通的市售化学镀金液大都是酸性的(PH4-6),因此它仍存在腐蚀化学镀镍磷合金的反应。只有中性化学镀金才可避免置换反应。实验结果表明,若用化学镀镍/中性化学镀金或化学镀镍/置换镀金(<1min)/中性化学镀金工艺,就可以获得既无黑色焊区侍猓�志哂杏帕嫉那ズ感院吐痢⒔鹣呒�瞎δ艿亩撇悖��视贑OB(Chip-on-Board)、BGA(Ball Grid Arrays)、MCM(Multi-Chip Modules)和CSP(Chip Scale Packages)等高难度印制板的制造。

自催化的化学镀金工艺已进行了许多研究,大致可分为有氰的和无氰的两类。无氰镀液的成本较高,而且镀液并不十分稳定。因此我们开发了一种以氰化金钾为金盐的中性化学镀金工艺,并申请了专利。本文主要介绍中性化学镀金工艺与其它咱镀金工艺组合的钎焊性和键合功能。

二 实验

1 键合性能测试(Bonding Tests)

键合性能测试是在AB306B型ASM装配自动热声键合机(ASM Assembly Automation Thermosonic Bonding Machine )上进行。金线的一端被键合到金球上,称为球键(Ball Bond)。金线的另一端则被键合到金焊区(Gold pad),称为楔形链(Wedge Bond),然后用金属挂钩钩住金线并用力向上拉,直至金线断裂并自动记下拉断时的拉力。若断裂在球键或楔形键上,表示键合不合格。若是金线本身被拉断,则表示键合良好,而拉断金线所需的平均拉力(Average Pull Force )越大,表示键合强度越高。

在本实验中,金球键的键合参数是:时间45ms、超声能量设定55、力55g;而楔形键的键合参数是:时间25ms、超声能量设定180、力155。两处键合的操作温度为140℃,金线直径32μm(1.25mil)。

2 钎焊性测试(Solderability Testing)

钎焊性测试是在DAGE-BT 2400PC型焊料球剪切试验机(Millice Solder Ball Shear Test Machine)上进行。先在焊接点上涂上助焊剂,再放上直径0.5mm的焊料球,然后送入重熔(Reflow)机上受热焊牢,最后将机器的剪切臂靠到焊料球上,用力向后推挤焊料球,直至焊料球被推离焊料接点,机器会自动记录推开焊料球所需的剪切力。所需剪切力越大,表示焊接越牢。

3 扫描电镜(SEM)和X-射线电子衍射能量分析(EDX)

用JSM-5310LV型JOEL扫描电镜来分析镀层的表面结构及剖面(Cross Section)结构,从金/镍间的剖面结构可以判断是否存在黑带(Black band)或黑牙(Black Teeth)等问题。EDX可以分析镀层中各组成光素的相对百分含量。

三 结果与讨论

1 在化学镀镍/置换镀金层之间黑带的形成

将化学镀镍的印制板浸入弱酸性置换镀金液中,置换金层将在化学镀镍层表面形成。若小心将置换金层剥掉,就会发现界面上有一层黑色的镍层,而在此黑色镍层的下方,仍然存在未变黑的化学镀镍层。有时黑色镍层会深入到正常镀镍层的深处,若这层深处的黑色镍层呈带状,人们称之为“黑带”(Black band),黑带区磷含量高达12.84%,而在政党化学镀镍区磷含量只有8.02%。在黑带上的金层很容易被胶带粘住而剥落(Peeling)。有时腐蚀形成的黑色镍层呈牙状,人们称之为“黑牙”(Black teeth)。

为何在形成置换金层的同时会形成黑色镍层呢?这要从置换反应的机理来解释。大家知道,化学镀镍层实际上是镍磷合金镀层(Ni2P)。在弱酸性环境中它与金液中的金氰络离子发生下列反应:

Ni2P+4[Au(CN)2]― →4Au+2[Ni(CN)4]2―+P

结果是金层的形成和镍磷合金被金被腐蚀,其中镍变成氰合镍络离子(Ni(CN)4)2―,而磷则残留在表面。磷的残留将使化学镀镍层变黑,并使表面磷含量升高。为了重现这一现象,我们也发现若将化学镀镍层浸入其它强腐蚀(Microetch)溶液中,它也同样变黑。EDX分析表明,表面层的镍含量由78.8%下降至48.4%,而磷的含量则由8.56%上升到13.14%。

2 黑色(焊)区对钎焊性和键合功能的影响

在焊接过程中,金和正常镍磷合金镀层均可以熔入焊料之中,但残留在黑色镍层表面的磷却不能迁移到金层并与焊料熔合。当大量黑色镍层存在时,其表面对焊料的润湿大为减低,使焊接强度大大减弱。此外,由于置换镀金层的纯度与厚度(约0.1μm都很低。因此它最适于铝线键合,而不能用于金线键合。

3置换镀金液的PH值对化学镀镍层腐蚀的影响

无电(解)镀金可通过两种途径得到:

1) 通过置换反应的置换镀金(Immtrsion Gold, IG)

2) 通过化学还原反应的化学镀金(Electroless Gold,EG)

置换镀金是通过化学镀镍磷层同镀金液中的金氰络离子的直接置换反应而施现

Ni2P+4[Au(CN)2]―→4Au+2[Ni(CN)4]2―+P

如前所述,反应的结果是金的沉积镍的溶解,不反应的磷则残留在化学镀镍层的表面,并在金/镍界面上形成黑区(黑带、黑牙…等形状)。

另一方面,化学镀金层是通过金氰络离子接被次磷酸根还原而形成的

2[Au(CN)2]―+H2PO―2 +H2O→2Au +A2PO―3 +4CN―+H2↑

反应的结果是金离子被还为金属金,而还原剂次磷酸根被氧化为亚磷酸根。因此,这与反应并不涉及到化学镀镍磷合金的腐蚀或磷的残留,也就不会有黑区问题。

表1用SEM剖面分析来检测各种EN/金组合的黑带与腐蚀

结果表明,黑带(Black Band)或黑区(Black pad)问题主要取决于镀金溶液的PH值。PH值越低,它对化学镀镍层的腐蚀越快,也越容易形成黑带。若用一步中性化学镀金(EN/EG-1)或两步中性化学镀金(EN/EG-1/EG-2),就不再观察到腐蚀或黑带,也就不会出现焊接不牢的问题。

4各种印制板镀金工艺组合的钎焊性比较

表2是用焊料球剪切试验法(Solder Ball Shear Test)测定各种印制板镀金工艺组合所得镀层钎焊性的结果。表中的断裂模式(Failure mode)1表木焊料从金焊点(Gold pad)处断裂;断裂模式2表示断裂发生在焊球本身。

表2各种印制板镀金工艺组合所得镀层的钎焊性比较

表2的结果表明,电镀镍/电镀软金具有最高的剪切强度(1370g)或最牢的焊接。化学镀镍/中性化学镀金/中性化学镀金也显示非常好的剪切强度要大于800g。

5各种印制板镀金工艺组合的金线键合功能比较

表3是用ASM装配自动热声键合机测定各种印制板镀金工艺组合所得镀层的金线键合测试结果。

表3各种印制板镀金工艺组合所得镀层的金线键合测试结果

由表3可见,传统的化学镀镍/置换镀金方法所得的镀层组合,有8个点断裂在金球键(Ball Bond)处,有2个点断裂在楔形键(Wedge Bond)或印制的镀金焊点上(Gold Pad),而良好的键合是不允许有一点断裂在球键与楔形键处。这说明化学镀镍/置换镀金工艺是不能用于金线键合。化学镀镍/中性化学镀金/中性化学镀金工艺所得镀层的键合功能是优良的,它与化学镀镍/化学镀钯/置换镀金以及电镀镍/电镀金的键合性能相当。我们认出这是因为化学镀金层有较高的纯度(磷不合共沉积)和较低硬度(98VHN25)的缘故。

6化学镀金层的厚度对金线键合功能的影响

良好的金线键合要求镀金层有一定的厚度。为此我们有各性化学镀金方法分别镀取0.2至0.68μm厚的金层,然后测定其键合性能。表4列出了不同金层厚度时所得的平均拉力(Average Pull Force)和断裂模式(Failure Mode)。

表4化学镀金层的厚度对金线键合功能的影响

由表4可见,当化学镀金层厚度在0.2μm时,断裂有时会出现在楔形键上,有时在金线上,这表明0.2μm厚度时的金线键合功能是很差的。当金层厚度达0.25μm以上时,断裂均在金线上,拉断金线所需的平均拉力也很高,说明此时的键合功能已很好。在实际应用时,我们控制化学镀金层的厚度在0.5-0.6μm,可比电镀软金0.6-0.7μm略低,这是因为化学镀金的平整度比电镀金的好,它不受电流分布的影响。

四 结论

1 用中性化学镀金取代弱酸性置换镀金时,它可以避免化学镀镍层的腐蚀,从而根本上消除了在化学镀镍/置换镀金层界面上出现黑色焊区或黑带的问题。

2 金厚度在0.25至0.50μm的化学镀镍/中性化学镀金层同时具有优良的钎焊性和金线键合功能,因此它是理想的电镀镍/电镀金的替代工艺,适于细线、高密度印制板使用。

3 电镀镍/电镀金工艺不适于电路来导通的印制板,而中性化学镀金无此限制,因而具有广阔的应用前景。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/290038.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-23
下一篇2023-04-23

发表评论

登录后才能评论

评论列表(0条)

    保存