全称:可扩展通讯和表示协议
简介:可扩展通讯和表示协议 (XMPP) 可用于服务类实时通讯、表示和需求响应服务中的XML数据元流式传输。XMPP以Jabber协议为基础,而Jabber是即时通讯中常用的开放式协议。XMPP is the IETF's formalization of the base XML streaming protocols for instant messaging and presence developed within the Jabber open-source community in 1999
XMPP(可扩展消息处理现场协议)是基于可扩展标记语言(XML)的协议,它用于即时消息(IM)以及在线现场探测。它在促进服务器之间的准即时操作。这个协议可能最终允许因特网用户向因特网上的其他任何人发送即时消息,即使其操作系统和浏览器不同。
XMPP的前身是Jabber,一个开源形式组织产生的网络即时通信协议。XMPP目前被IETF国际标准组织完成了标准化工作。标准化的核心结果分为两部分;
核心的XML流传输协议
基于XMLFreeEIM流传输的即时通讯扩展应用
XMPP的核心XML流传输协议的定义使得XMPP能够在一个比以往网络通信协议更规范的平台上。借助于XML易于解析和阅读的特性,使得XMPP的协议能够非常漂亮。
XMPP的即时通讯扩展应用部分是根据IETF在这之前对即时通讯的一个抽象定义的,与其他业已得到广泛使用的即时通讯协议,诸如AIM,QQ等有功能完整,完善等先进性。
XMPP的扩展协议Jingle使得其支持语音和视频。
XMPP的官方文档是RFC 3920.
XMPP中定义了三个角色,客户端,服务器,网关。通信能够在这三者的任意两个之间双向发生。服务器同时承担了客户端信息记录,连接管理和信息的路由功能。网关承担着与异构即时通信系统的互联互通,异构系统可以包括SMS(短信),MSN,ICQ等。基本的网络形式是单客户端通过TCP/IP连接到单服务器,然后在之上传输XML。
传输的是与即时通讯相关的指令。在以前这些命令要么用2进制的形式发送(比如QQ),要么用纯文本指令加空格加参数加换行符的方式发送(比如MSN)。而XMPP传输的即时通讯指令的逻辑与以往相仿,只是协议的形式变成了XML格式的纯文本。
以文档的观点来看,客户端或服务器发送的所有XML文本连缀在一起,从<stream>到</stream>构成了一个完整的XML文档。其中的stream标签就是所谓的XML Stream。在<stream>与</stream>中间的那些<message>...</message>这样的XML元素就是所谓的XML Stanza(XML节)。XMPP核心协议通信的基本模式就是先建立一个stream,然后协商一堆安全之类的东西,中间通信过程就是客户端发送XML Stanza,一个接一个的。服务器根据客户端发送的信息以及程序的逻辑,发送XML Stanza给客户端。但是这个过程并不是一问一答的,任何时候都有可能从一方发信给另外一方。通信的最后阶段是</stream>关闭流,关闭TCP/IP连接。
目前不少IM应用系统如:Google公司的Google Talk以及Jive Messenger等开源应用,都是遵循XMPP协议集而设计实现的,这些应用具有很好的互通性。
转载 这种功能实际上就是数据同步,同时要考虑手机本身、电量、网络流量等等限制因素,所以通常在移动端上有一下两个解决方案:
1.一种是定时去server查询数据,通常是使用HTTP协议来访问web服务器,称Polling(轮询);
2.还有一种是移动端和服务器建立长连接,使用XMPP长连接,称Push(推送)。
从耗费的电量、流量和数据延迟性各方面来说,Push有明显的优势。但是使用Push的缺点是:
对于客户端:实现和维护相对成本高,在移动无线网络下维护长连接,相对有一些技术上的开发难度。
对于服务器:如何实现多核并发,cpu作业调度,数量庞大的长连接并发维护等技术,仍存在开发难点。
在讲述Push方案的原理前,我们先了解一下移动无线网络的特点。
移动无线网络的特点:
因为 IP v4 的 IP 量有限,运营商分配给手机终端的 IP 是运营商内网的 IP,手机要连接 Internet,就需要通过运营商的网关做一个网络地址转换(Network Address Translation,NAT)。简单的说运营商的网关需要维护一个外网 IP、端口到内网 IP、端口的对应关系,以确保内网的手机可以跟 Internet 的服务器通讯
GGSN(Gateway GPRS
Support Node 网关GPRS支持结点)模块就实现了NAT功能。
因为大部分移动无线网络运营商都是为了减少网关的NAT映射表的负荷,所以如果发现链路中有一段时间没有数据通讯时,会删除其对应表,造成链路中断。(关于NAT的作用及其原理可以查看我的另一篇博文:关于使用UDP(TCP)跨局域网,NAT穿透的心得)
Push在Android平台上长连接的实现:
既然我们知道我们移动端要和Internet进行通信,必须通过运营商的网关,所以,为了不让NAT映射表失效,我们需要定时向Internet发送数据,因为只是为了不然NAT映射表失效,所以只需发送长度为0的数据即可。
这时候就要用到定时器,在android系统上,定时器通常有一下两种:
1.java.util.Timer
2.android.app.AlarmManager
分析:
Timer:可以按照计划或者时间周期来执行相关的任务。但是Timer需要用WakeLock来让CPU保持唤醒状态,才能保证任务的执行,这样子会消耗大量流量;当CPU处于休眠的时候,就不能唤醒执行任务,所以应用于移动端明显是不合适。
AlarmManager:AlarmManager类是属于android系统封装好来管理RTC模块的管理类。这里就涉及到RTC模块,要更好地了解两者的区别,就要明白两者真正的区别。
RTC(Real- Time Clock)实时闹钟在一个嵌入式系统中,通常采用RTC
来提供可靠的系统时间,包括时分秒和年月日等而且要求在系统处于关机状态下它也能够正常工作(通常采用后备电池供电),它的外围也不需要太多的辅助电路,典型的就是只需要一个高精度的32.768KHz
晶体和电阻电容等。(如果对这方面感兴趣,可以自己查阅相关资料,这里就说个大概)
好了,回来正题。所以,AlarmManager又称全局定时闹钟。这意味着,当我用使用AlarmManager来定时执行任务,CPU可以正常地休眠,只有在执行任务是,才唤醒CPU,这个过程是很短时间的。
下面简单来说明其使用:
1.类似于Timer功能:
//获得闹钟管理器
AlarmManager
am = (AlarmManager)getSystemService(ALARM_SERVICE)
//设置任务执行计划
am.setRepeating(AlarmManager.ELAPSED_REALTIME, firstTime, 5*1000,
sender)//从firstTime才开始执行,每隔5秒再执行
2.实现全局定时功能:
//获得闹钟管理器
AlarmManager
am = (AlarmManager)getSystemService(ALARM_SERVICE)
//设置任务执行计划
am.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP, firstTime,
5*1000, sender)//从firstTime才开始执行,每隔5秒再执行
总结:在android客户端使用Push推送时,应该使用AlarmManager来实现心跳功能,使其真正实现长连接。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)