目前,空间计量经济学研究包括以下四个感兴趣的领域:
计量经济模型中空间效应的确定; 合并了空间影响的模型的估计;空间效应存在的说明、检验和诊断;空间预测。
空间计量经济学模型有多种类型(Anselin,et al. 2004)。 首先介绍纳入了空间效应(空间相关和空间差异)、适用于截面数据的空间常系数回归模型,包括空间滞后模型(Spatial Lag Model,SLM)与空间误差模型(Spatial Error Model,SEM)两种,以及空间变系数回归模型——地理加权回归模型(Geographical Weighted Regression,GWR)。适用于时间序列和截面数据合成的空间面板数据计量经济学模型将在以后予以介绍。
空间滞后模型(Spatial Lag Model,SLM)主要是探讨各变量在一地区是否有扩散现象(溢出效应)。其模型表达式为:参数 反映了自变量对因变量的影响,空间滞后因变量 是一内生变量,反映了空间距离对区域行为的作用。区域行为受到文化环境及与空间距离有关的迁移成本的影响,具有很强的地域性(Anselin et al.,1996)。由于SLM模型与时间序列中自回归模型相类似,因此SLM也被称作空间自回归模型(Spatial Autoregressive Model,SAR)。
空间误差模型(Spatial Error Model,SEM)存在于扰动误差项之中的空间依赖作用,度量了邻近地区关于因变量的误差冲击对本地区观察值的影响程度。由于SEM模型与时间序列中的序列相关问题类似,也被称为空间自相关模型(Spatial Autocorrelation Model,SAC)。
估计技术:鉴于空间回归模型由于自变量的内生性,对于上述两种模型的估计如果仍采用OLS,系数估计值会有偏或者无效,需要通过IV、ML或GLS、GMM等其他方法来进行估计。Anselin(1988)建议采用极大似然法估计空间滞后模型(SLM)和空间误差模型(SEM)的参数。
空间自相关检验与SLM、SEM的选择:判断地区间创新产出行为的空间相关性是否存在,以及SLM和SEM那个模型更恰当,一般可通过包括Moran’s I检验、两个拉格朗日乘数(Lagrange Multiplier)形式LMERR、LMLAG及其稳健(Robust)的R-LMERR、R-LMLAG)等形式来实现。由于事先无法根据先验经验推断在SLM和SEM模型中是否存在空间依赖性,有必要构建一种判别准则,以决定哪种空间模型更加符合客观实际。Anselin和Florax(1995)提出了如下判别准则:如果在空间依赖性的检验中发现LMLAG较之LMERR在统计上更加显著,且R-LMLAG显著而R-LMERR不显著,则可以断定适合的模型是空间滞后模型;相反,如果LMERR比LMLAG在统计上更加显著,且R-LMERR显著而R-LMLAG不显著,则可以断定空间误差模型是恰当的模型。
除了拟合优度R2检验以外,常用的检验准则还有:自然对数似然函数值(Log likelihood,LogL)、似然比率(Likelihood Ratio,LR)、赤池信息准则(Akaike information criterion,AIC)、施瓦茨准则(Schwartz criterion,SC)。对数似然值越大,AIC和SC值越小,模型拟合效果越好。这几个指标也用来比较OLS估计的经典线性回归模型和SLM、SEM,似然值的自然对数最大的模型最好。
空间变系数回归模型及估计:就目前国内外的研究来看,大多直接假定横截面单元是同质的,即地区或企业之间没有差异。传统的OLS只是对参数进行“平均”或“全域”估计,不能反映参数在不同空间的空间非稳定性(吴玉鸣,李建霞,2006;苏方林,2007)。 当用横截面数据建立计量经济学模型时,由于这种数据在空间上表现出的复杂性、自相关性和变异性,使得解释变量对被解释变量的影响在不同区域之间可能是不同的,假定区域之间的经济行为在空间上具有异质性的差异可能更加符合现实。空间变系数回归模型(Spatial Varying-Coefficient Regression Model)中的地理加权回归模型(Geographical Weighted Regression,GWR)是一种解决这种问题的有效方法。 、空间计量主要命令
spmat 生成空间权重矩阵
spatwmat 用于定义空间权重矩阵
spatgsa 用于全局空间自相关检验
gsa表示global spatial autocorrelation
spatlsa 进行局部空间自相关检验
lsa表示local spatial autocorrelation
spatcorr 考察空间自相关指标对距离临界值d的依赖性
spatdiag 针对ols回归结果,考察是否存在空间效应
spatreg 估计空间滞后与空间误差模型
空间面板主要命令为:help xsmle
Spatial Autoregressive (SAR) model
xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) model(sar) [SAR_options]
Spatial Durbin (SDM) model
xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) model(sdm) [SDM_options]
Spatial Autocorrelation (SAC) model
xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) emat(name) model(sac) [SAC_options]
Spatial Error (SEM) model
xsmle depvar [indepvars] [if] [in] [weight] , emat(name) model(sem) [SEM_options]
Generalized Spatial Panel Random Effects (GSPRE) model
xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) model(gspre) [emat(name) GSPRE_options]
SAR指标又称抛物线转向同时也称停损点转向,它是利用抛物线方式,随时调整停损点位置以观察买卖点。由于停损点(又称转向点SAR)以弧形的方式移动,故称之为抛物线转向指标。1、SAR指标的运用原则
买卖的进出时机是价位穿过SAR时,也就是向下跌破SAR便卖出,向上越过SAR就买进。
2、SAR指标的评价
(1)计算与绘图较复杂
(2)盘局中,经常交替出现讯号,失误率高
(3)操作简单,买卖点明确,出现讯号即可进行
(4)SAR与实际价格,时间长短有密切关系,可适应不同形态股价之波动特性
3、SAR指标的计算方法
(1)先选定一段时间判断为上涨或下跌。
(2)第二天的SAR,则为第一天的最高价(看涨时)或是最低价(看跌时)与第一天的SAR的差距乘上加速因子,再加上第一天的SAR就可求得。
(3)若是看涨,则第一天的SAR值必须是内的最低价;若是看跌,则第一天的SAR须是的最高价
(4)加速因子第一次取假若第一天的最高价比前一天的最高价还高,则加速因子增加若无新高则加速因子沿用前一天的数值,但加速因子最高不能超过反之,下跌也类推。
(5)每日的SAR都可用上述方法类推,归纳公式如下:
SAR(n)=第n日的SAR值,SAR(n-1)即第(n-1)日之值;
SAR(n)=SAR(n-1)+AF〖EP(n-1)-SAR(n-1)〗
AR;加速因子;
EP:极点价,若是看涨一段期间,则EP为这段期间的最高价,若是看跌一段时间,则EP为这段期间的最低价;
EP(n-1):第(n-1)日的极点价。
(6)若是看涨期间,计算出某日的SAR比当日或前一日的最低价高,则应以当日或前一日的最低价为某日之SAR;若是看跌期间,计算某日之SAR比当日或前一日的最高价低,则应以当日或前一日的最高价为某日的SAR。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)