2020-02-08-2小刘科研笔记之FIB-SEM双束系统在材料研究中的应用

2020-02-08-2小刘科研笔记之FIB-SEM双束系统在材料研究中的应用,第1张

聚焦离子束扫描电镜双束系统(FIB-SEM)是在SEM的基础上增加了聚焦离子束镜筒的双束系统,同时具备微纳加工和成像的功能,广泛应用于科学研究和半导体芯片研发等多个领域。本文记录一下FIB-SEM在材料研究中的应用。

以目前实验室配有的FIB-SEM的型号是蔡司的Crossbeam 540为例进行如下分析,离子束最高成像分辨率为3nm,电子束最高分辨率为0.9nm。该系统的主要部件及功能如下:

1.离子束: 溅射(切割、抛光、刻蚀);刻蚀最小线宽10nm,切片最薄3nm。 

2.电子束 : 成像和实时观察

3.GIS(气体注入系统): 沉积和辅助刻蚀;五种气体:Pt、W、SiO2、Au、XeF2(增强刻蚀SiO2)

4.纳米机械手:  转移样品 

5.EDS: 成分定量和分布

6.EBSD : 微区晶向及晶粒分布

7.Loadlock(样品预抽室): 快速进样,进样时间只需~1min

由上述FIB-SEM的一个部件或多个部件联合使用,可以实现在材料研究中的多种应用,具体应用实例如下:

图2a和b分别是梳子形状的CdS微米线的光学显微镜和扫描电镜照片,从光学显微镜照片可以看出在CdS微米线节点处内部含有其他物质,但无法确定是什么材料和内部形貌。利用FIB-SEM在节点处定点切割截面,然后对截面成像和做EDS mapping,如图2c、d、e和f所示,可以很直观的得到在CdS微米线的节点处内部含有Sn球。

FIB-SEM制备TEM样品的常规步骤如图3所示,主要有以下几步:

1)在样品感兴趣位置沉积pt保护层

2)在感兴趣区域的两侧挖大坑,得到只有约1微米厚的薄片

3)对薄片进行U-cut,将薄片底部和一侧完全切断

4)缓慢移下纳米机械手,轻轻接触薄片悬空的一端后,沉积pt将薄片和纳米机械手焊接牢固,然后切断薄片另一侧,缓慢升起纳米机械手即可提出薄片

5)移动样品台和纳米机械手,使薄片与铜网(放置TEM样品用)轻轻接触,然后沉积pt将薄片和铜网焊接牢固,将薄片和纳米机械手连接的一端切断,移开纳米机械手,转移完成

6)最后一步为减薄和清洗,先用大加速电压离子束将薄片减薄至150nm左右,再利用低电压离子束将其减薄至最终厚度(普通TEM样品<100nm,高分辨TEM样品50nm左右,球差TEM样品<50nm)

一种如图4a所示的MoS2场效应管,需要确定实际器件中MoS2的层数及栅极(Ag纳米线)和MoS2之间的距离。利用FIB-SEM可以准确的在MoS2场效应管的沟道位置,垂直于Ag纳米线方向,提出一个薄片,并对其进行减薄,制备成截面透射样。在TEM下即可得到MoS2的层数为14层(图4c), Ag纳米线和MoS2之间的距离为30nm(图4b)。

图5是一种锰酸锂材料的STEM像,该样品是由FIB-SEM制备,图中可以看到清晰的原子像。这表明FIB-SEM制备的该球差透射样非常薄并且有很少的损伤层。

FIB-SEM还可以进行微纳图形的加工。

图6a 是FIB-SEM在Au/SiO2上制备的光栅,光栅周期为150nm,光栅开口为75nm。

图6b 是利用FIB-SEM在Mo/石英上做的切仑科夫辐射源针尖,针尖曲率半径为17nm。

图6c 是在Au膜上加工的三维对称结构蜘蛛网。

图6d 是FIB-SEM在硅上刻蚀的贺新年图案,图中最小细节尺寸仅有25nm。

FIB-SEM可以对材料进行切片式的形貌和成分三维重构,揭示材料的内部三维结构。大概过程如图7a所示, FIB切掉一定厚度的样品,SEM拍一张照片,重复此过程,连续拍上百张照片,然后将上百张切片照片重构出三维形貌。图7b是一种多孔材料内部3×5×2um范围的三维重构结果,其实验数据是利用FIB-SEM采集,三维重构是利用Avizo软件得到,其分辩率可达纳米级,展示了内部孔隙的三维空间分布,并可以计算出孔隙的半径大小、体积及曲率等参数。

利用FIB-SEM配有的纳米机械手及配合使用离子束沉积Pt,可以实现微米材料的转移,即把某种材料从一个位置(衬底)转移到特定位置(衬底),并固定牢固。图8是把四针氧化锌微米线从硅片转移到两电极的沟道之间,从而制备成两个微米线间距只有1um的特殊器件。

最后,FIB-SEM还有很多其他的应用,例如三维原子探针样品制备,芯片线路修改等。总之FIB-SEM是材料研究中一个非常重要的手段。

不积珪步,无以至千里;不积细流,无以成江海。做好每一份工作,都需要坚持不懈的学习。

华慧高芯网是国内领先、拥有光电领域全产业链闭环服务能力的电商服务平台,涵盖中高端光电芯片研发代工、检测分析等技术解决方案的服务能力。华慧高芯网依托清华大学天津电子院高端光电子芯片创新中心强大的技术储备和工艺团队,拥有强大的工艺研发能力。同时华慧高芯网使用的Crossbeam 540聚焦离子束(FIB)系统,目前国际一流水准的设备。可应用于:1. 定点剖面形貌和成分表征2. TEM样品制备3. 微纳结构加工4. 芯片线路修改5. 切片式三维重构6. 材料转移7. 三维原子探针样品制备等。有需求,可点击:网页链接咨询官方客服。

聚焦离子束显微镜的基本功能可概分为四种:

1. 定点切割(Precisional Cutting)-利用离子的物理碰撞来达到切割之目的。 广泛应用于集成电路(IC)和LCD的Cross Section加工和分析。

2. 选择性的材料蒸镀(Selective Deposition)-以离子束的能量分解有机金属蒸气或气相绝缘材料,在局部区域作导体或非导体的沉积,可提供金属和氧化层的沉积(Metal and TEOS Deposition),常见的金属沉积有铂(Platinum,Pt)和钨(Tungstun,W)二种。

3. 强化性蚀刻或选择性蚀刻(Enhanced Etching-Iodine/Selective Etching-XeF2)-辅以腐蚀性气体,加速切割的效率或作选择性的材料去除。

4. 蚀刻终点侦测(End Point Detection)-侦测二次离子的讯号,藉以了解切割或蚀刻的进行状况。

在实际的应用上,为了有效的搜寻故障的区域或外来掉落的材料碎屑、尘埃、污染粒子(Particles)等位置,离子束显微镜在外围的控制系统上,可配备自动定位导航系统或影像重叠定位装置,当生产线的缺陷检视系统(Defect Inspection System),例如:KLA或Tencor,发现制程异常时,可将芯片上缺陷的计算机档案传送到自动定位导航系统,离子束显微镜即可迅速找寻缺陷的位置,并进行切割动作,确认缺陷发生的层次,如此可避免芯片送出无尘室后与外界的灰尘混淆,达到 Off-line 找到的就是In-line 看到的 精准度,这种功能免除了工程师在试片制备上极大的困扰,同时节省了传统机械研磨法中大量的人力与工时,加之也大大的提升了成功率。

在新型的聚焦离子束显微镜,目前已有双束(Dual Beam)的机型(离子束+电子束),在以离子束切割时,用电子束观察影像,除了可避免离子束继续 破坏现场 外,尚可有效的提高影像分辨率,同时也可配备X-光能谱分析仪或二次离子质谱仪,作元素分析之用,多样化的分析功能使得聚焦离子束显微镜的便利性及使用率大幅提升。

至于离子束显微镜在IC工业上的应用,主要可分为五大类:1.线路修补和布局验证;2.组件故障分析;3.生产线制程异常分析;4.IC 制程监控-例如光阻切割;5.穿透式电子显微镜试片制作。

在各类应用中,以线路修补和布局验证这一类的工作具有最大经济效益,局部的线路修改可省略重作光罩和初次试作的研发成本,这样的运作模式对缩短研发到量产的时程绝对有效,同时节省大量研发费用。

当我们欲进行产品侦错或故障分析时,在没有KLA或TENCOR等数据档案(例如:GDSII file)数据的情况下,对于小尺寸的晶粒或已经封装后的产品,亦可利用附属的影像重叠系统(Image Overlay System),在光学显微镜下依据参考点定出欲分析位置的相对横向和纵向距离,而在离子束显微镜内迅速找到该位置,不需以人力费时的去寻找。假若当欲分析处为前层次或是为平坦化制程,离子束显微镜的影像无法从上视(Top-View)的观察推断出确切的分析位置时,也可藉影像对准(Align Image)将离子束显微镜影像与光学显微镜影像重叠,再由光学显微镜影像定出欲切割位置,同样可达成定点位置的分析。

关于穿透式电子显微镜试片制作,离子束显微镜提供了另一种选择,在合理的工作时数(2-6小时)与成功率(>90 %)的掌握度下,离子束显微镜不失为良好的试片制作工具。

由于离子束显微镜在辅以不同的化学气体时可具有材料沉积与蚀刻的功能,因此在5-10年前即引起人们对In-Situ Processing(在单一Chamber内连续完成所有制程) 的研究兴趣,许多先进的组件制作,例如:雷射二极管(Laser Diode),量子井组件(Quantum Well Devices)等,都曾利用离子束显微镜的工作原理示范过组件的制作。加之,因为离子束显微镜的离子源为镓离子,对硅晶材料而言,镓离子植入亦可作为P-Type接面的离子源,在过去的浅接面(Shallow Junction Formation)中,由于镓离子的扩散系数和穿隧效应比硼(Boron,B)来得小,因此也曾掀起研究的热潮。

此外在免光罩式的离子植入(Maskless Ion Implantation)应用上,由于离子束显微镜的离子束能量可随意调变,所以相较于传统式的光阻罩幕后单一能量离子布植,离子束显微镜不但可以作极小面积的离子布植(0.1埃0.1 um2 以下),而且最特别的是布植区域的离子植入深度 (亦即 P/N 接面的深度)可依组件设计而调变,这将使得组件设计的空间更广更有趣;在IC工业的应用上,离子束显微镜在光罩修补(Mask Repair)上亦有取代雷射光的趋势,尤其是对相位转换光罩(Phase Shift Mask, PSM)的制作中,离子束显微镜的分辨率和修补的精准度(Repair Edge Placement Accuracy)都优于雷射光,在0.25 um以下的制程中,可预期的是离子束显微镜也将会在这个领域中活络起来。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/298693.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-25
下一篇2023-04-25

发表评论

登录后才能评论

评论列表(0条)

    保存