sem_wait函数也是一个原子操作,它的作用是从信号量的值减去一个“1”,但它永远会先等待该信号量为一个非零值才开始做减法。也就是说,如果你对一个值为2的信号量调用sem_wait(),线程将会继续执行,将信号量的值将减到1。如果对一个值为0的信号量调用sem_wait(),这个函数就会原地等待直到有其它线程增加了这个值使它不再是0为止。如果有两个线程都在sem_wait()中等待同一个信号量变成非零值,那么当它被第三个线程增加 一个“1”时,等待线程中只有一个能够对信号量做减法并继续执行,另一个还将处于等待状态。sem_trywait(sem_t *sem)是函数sem_wait的非阻塞版,它直接将信号量sem减1,同时返回错误代码。
sem_wait() 减小(锁定)由sem指定的信号量的值.如果信号量的值比0大,那么进行减一的操作,函数立即返回.如果信号量当前为0值,那么调用就会一直阻塞直到或者是信号量变得可以进行减一的操作(例如,信号量的值比0大),或者是信号处理程序中断调用
sem_trywait() 和 sem_wait()是一样的,除了如果不能够对信号量立即进行减一,那么sem_trywait()就会返回一个错误(错误号是AGAIN)而不是锁定.sem_timedwait() 和 sem_wait()是一样的,除了如果减一操作不能立即执行的话,abs_timeout 指定了调用应该被阻塞的时间限制.abs_timeout 参数指向了一个结构体指定了由秒和纳秒组成的绝对的超时值:从1970-01-01 00:00:00 +0000纪元开始的UTC,结构体的定义如下:struct timespec {time_t tv_sec/* Seconds */long tv_nsec/* Nanoseconds [0 .. 999999999] */}如果超时值已经超过了调用规定的值,那么信号量不能被立即锁定,之后sem_timedwait() 为超时失败(error设置为ETIMEDOUT).
如果操作立即生效,那么sem_timedwait() 永远不会返回超时的错误,不管abs_timeout的值.更进一步的是,在这种情况下abs_timeout值的有效性都不会检查. EINTR The call was interrupted by a signal handlersee signal(7).//调用被信号处理中断
EINVAL sem is not a valid semaphore.//sem不是有效的信号量
The following additional error can occur for sem_trywait()://下面的错误是sem_trywait()可能发生的:
EAGAIN The operation could not be performed without blocking (i.e., thesemaphore currently has the value zero).//除了锁定无法进行别的操作(如信号量当前是0值).
The following additional errors can occur for sem_timedwait()://下面的错误是sem_timedwait()可能发生的:
EINVAL The value of abs_timeout.tv_nsecs is less than 0, or greater than orequal to 1000 million.//abs_timeout.tv_nsecs 的值比0小或者大于等于1000毫秒(译者注:纳秒的值不能比0小,不能比1秒大)
ETIMEDOUTThe call timed out before the semaphore could be locked.//在信号量锁定之前就超时了 对这些函数,信号处理程序总是会中断阻塞,不管是否使用了sigaction(2)的SA_RESTART标志位.
规定在拿到左侧的筷子后,先检查右面的筷子是否可用。如果不可用,则先放下左侧筷子, 等一段时间再重复整个过程。 分析:当出现以下情形,在某一个瞬间,所有的哲学家都同时启动这个算法,拿起左侧的筷 子,而看到右侧筷子不可用,又都放下左侧筷子,等一会儿,又同时拿起左侧筷子……如此 这样永远重复下去。对于这种情况,所有的程序都在运行,但却无法取得进展,即出现饥饿, 所有的哲学家都吃不上饭。 (2) 描述一种没有人饿死(永远拿不到筷子)算法。 考虑了四种实现的方式(A、B、C、D): A.原理:至多只允许四个哲学家同时进餐,以保证至少有一个哲学家能够进餐,最终总会释 放出他所使用过的两支筷子,从而可使更多的哲学家进餐。以下将room 作为信号量,只允 许4 个哲学家同时进入餐厅就餐,这样就能保证至少有一个哲学家可以就餐,而申请进入 餐厅的哲学家进入room 的等待队列,根据FIFO 的原则,总会进入到餐厅就餐,因此不会 出现饿死和死锁的现象。 伪码: semaphore chopstick[5]=semaphore room=4void philosopher(int i) } B.原理:仅当哲学家的左右两支筷子都可用时,才允许他拿起筷子进餐。 方法1:利用AND 型信号量机制实现:根据课程讲述,在一个原语中,将一段代码同时需 要的多个临界资源,要么全部分配给它,要么一个都不分配,因此不会出现死锁的情形。当 某些资源不够时阻塞调用进程由于等待队列的存在,使得对资源的请求满足FIFO 的要求, 因此不会出现饥饿的情形。 伪码: semaphore chopstick[5]=void philosopher(int I) } 方法2:利用信号量的保护机制实现。通过信号量mutex对eat()之前的取左侧和右侧筷 子的操作进行保护,使之成为一个原子操作,这样可以防止死锁的出现。 伪码: semaphore mutex = 1 semaphore chopstick[5]=void philosopher(int I) }欢迎分享,转载请注明来源:夏雨云
评论列表(0条)