SEM中Ni和Al2O3区分?

SEM中Ni和Al2O3区分?,第1张

10nm非常小了,一般情况下FE-SEM不会用来观测10nm左右纳米颗粒的微观结构的~还有,SEM是二次电子成像,由于二次电子的产额随原子数的变化不大,所以得到的SEM图像中Contrast不怎么明显。所以我觉得你应该用TEM来表征你做的这个样品,在TEM图像中,Ni的颜色比Al2O3的暗,如果条件允许的话,做HRTEM或者EDX就更能准备表征你样品中的黑色纳米颗粒是Ni了~~~

可以观察。

需要你将你的样品进行抛光,最好再做一个横断面的抛光试样,这样在表面和横断面都可以观察。

放大倍数需要样品进入SEM后具体观察,放大倍数不是问题。估计只需要很小的放大倍数,1000倍左右没什么问题

本发明的目的是提供一种环境友好的氮氧化物甲烷选择催化还原催化剂及其应用方法。该催化剂以双金属ce-ga为活性组分,不含cr等有毒金属及贵金属,以沸石分子筛为载体,并首次应用于ch4-scr反应中。在ce和ga物种的协同作用下,ce-ga/分子筛催化剂在ch4-scr表现出高活性和稳定性。催化剂制备过程简单易操作,反应寿命长,适合在工业生产中进行大规模应用。

本发明提供一种氮氧化物甲烷选择催化还原催化剂。该催化剂以可溶性镓盐和可溶性铈盐为原料,以分子筛为载体,通过有机酸辅助浸渍法制备。催化剂的质量百分比组成为:

金属ga2~5%

金属ce1~4%

分子筛91~97%

其中,所述的分子筛为具有mfi、bea、cha结构的硅铝分子筛和硅磷铝分子筛。

优选的,所述的分子筛为zsm-5分子筛,si/al=25~35。

所述的有机酸为柠檬酸、谷氨酸或水杨酸中的任意一种,且摩尔比为有机酸:(ce+ga)=0~1.5。

优选的,所述的有机酸为柠檬酸,且摩尔比为有机酸:(ce+ga)=1。

进一步优选的,h2o:h-zsm-5=100质量比、ce:h-zsm-5=0.02质量比、ga:h-zsm-5=0.04质量比,柠檬酸:(ga+ce)=1摩尔比。

所述的可溶性镓盐为硝酸镓、氯化镓,可溶性铈盐为硝酸铈、氯化铈、硫酸铈、醋酸铈。

本发明提供一种氮氧化物甲烷选择催化还原催化剂,其制备方法包括以下步骤:

(1)将有机酸溶于计量水中,然后加入计量的可溶性镓盐和可溶性铈盐,剧烈搅拌0.3~2小时后,加入计量的分子筛载体,继续搅拌6-24h后,得到均匀混合浆液。

(2)将混合浆液低温蒸干,并于80~120℃干燥6-20小时;

(3)将步骤(2)所得产品在10%h2/ar中300~800℃还原0.5~2小时,再在10%o2/ar中200~500℃氧化0.5~2小时;

(4)将步骤(3)所得产品直接挤压成型获得成型催化剂,或者涂覆于具有固定形状的堇青石陶瓷或金属波纹板上获得整体式催化剂。

本发明提供一种氮氧化物甲烷选择催化还原催化剂,其应用方法包括以下步骤:

(1)将成型催化剂或整体式催化剂放入固定床反应器中,在10%o2/ar气氛中300~400℃预处理1小时;

(2)将反应器温度升温至300-600℃进行ch4-scr反应,反应入口氮氧化物浓度为100~2000ppm,甲烷/氮氧化物摩尔比为1~3,反应的体积空速为1000~100000h-1。

优选的,反应的体积空速为40000~60000h-1。甲烷/氮氧化物摩尔比为1.45。

本发明提供的氮氧化物甲烷选择催化还原催化剂,可用于固定源氮氧化物的配方处理,如火电厂、钢铁厂、水泥厂等锅炉的烟气脱硝过程。

本发明提供了一种氮氧化物甲烷选择催化还原催化剂,在ch4-scr反应中具有高活性和稳定性。该催化剂制备过程简单易操作,反应寿命长。

与现有技术相比,本发明还具有以下优点和效果:

(1)催化剂表现出优异的氮氧化物净化效果,氮氧化物净化效率最高可达95%以上;

(2)催化剂组分环境友好且不含贵金属,制备成本较低;

(3)水蒸气对催化剂反应活性的影响可逆,除水后活性可以恢复。

附图说明

图1为柠檬酸辅助浸渍法制备的ce-ga/h-zsm-5催化剂的xrd谱图;

图2a为h-zsm-5催化剂的sem照片;

图2b为柠檬酸辅助浸渍法制备的ce-ga/h-zsm-5催化剂的sem照片;

图3为柠檬酸辅助浸渍法制备的ce-ga/h-zsm-5催化剂的ch4-scr反应活性曲线图;

图4为ce-ga/h-zsm-5催化剂在ch4-scr反应中的水蒸气稳定性测试图;

图5a为3%单组分ga/h-zsm-5催化剂的ch4-scr反应活性曲线图;

图5b为4%单组分ga/h-zsm-5催化剂的ch4-scr反应活性曲线图;

图5c为5%单组分ga/h-zsm-5催化剂的ch4-scr反应活性曲线图。

具体实施方式

以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。

在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。

本发明中的技术术语,给出定义的从其定义,未给出定义的则按本领域的通常含义理解。

实施例1:

(1)ce-ga/h-zsm-5催化剂的制备

原料配比如下:h2o:h-zsm-5=100(质量比)、ce:h-zsm-5=0.02(质量比)、ga:h-zsm-5=0.04(质量比),柠檬酸:(ga+ce)=1(摩尔比)

将计量的柠檬酸溶于水中,加入计量的硝酸镓、硝酸铈,剧烈搅拌0.5小时后,加入h-zsm-5(si/al=28)粉末,继续搅拌24小时,得到均匀混合浆液;将混合浆液低温蒸干,并于90℃烘箱中干燥15小时;将干燥后的样品在10%h2/ar中650℃还原1小时,在10%o2/ar中350℃氧化1小时,冷却至室温后将样品直接挤压成型。

(2)ce-ga/h-zsm-5催化剂在ch4-scr反应中的应用

称取0.12g20-40目成型催化剂,放入固定床反应器中,在10%o2/ar气氛中350℃预处理1小时后,调整反应器温度为300℃,并通入反应混合气,反应体积空速为60000h-1,平衡气各组分含量如下:no=2750ppm,ch4=4000ppm,即甲烷/氮氧化物摩尔比约为1.45,o2=4%,h2o=6%,he为平衡气;每50℃检测反应过程中的一个数据点,记录温度范围为300-550℃,用nox分析仪(ecotechec9841)和气相色谱仪记录不同温度下的反应数据,结果如图3所示。

催化剂结果表明,氮氧化物的转化率随着反应温度的升高而升高,当反应温度超过450℃时,氮氧化物生成氮气的转化率接近90%,550℃时可达到95%以上,如表1所示。

实施例2:

按照实施例1中的原料与步骤,不同的是,柠檬酸的使用量为0,即不加入有机酸;按照实施例1中催化剂在ch4-scr反应的应用方法,结果表明,550℃时氮氧化物生成氮气的转化率约为77%,如表1所示。

实施例3:

按照实施例1中的原料与步骤,不同的是,固定ga的含量为4%,调变金属ce的负载量为1%,按照实施例1中催化剂在ch4-scr反应的应用方法,结果表明,550℃时氮氧化物生成氮气的转化率为70%。

实施例4:

按照实施例1中的原料与步骤,不同的是,将辅助浸渍的有机酸变为谷氨酸和水杨酸;按照实施例1中催化剂在ch4-scr反应的应用方法,结果如表1所示。从表中可以看出,使用有机酸辅助浸渍,可以明显提高催化剂的催化活性,其中,柠檬酸的提升效果最好,550℃时可由不添加有机酸时的77%提高至最高95%左右,其次为谷氨酸,最高可达到84%,水杨酸效果最差,仅提高2%左右。

表1:有机酸对双金属ce-ga/h-zsm-5催化剂nox转化率的影响

实施例5:

按照实施例1中的原料与步骤,不同的是,将柠檬酸/金属(ga+ce)摩尔比调节为0.5和1.5;按照实施例1中催化剂在ch4-scr反应的应用方法,结果如表2所示。当柠檬酸/金属(ga+ce)的摩尔比为0.5时,550℃氮氧化物生成氮气的转化率可达到83%;当柠檬酸/金属(ga+ce)摩尔比为1.5时,550℃氮氧化物生成氮气的转化率亦可达到80%。但均小于柠檬酸/金属(ga+ce)摩尔比为1的转化率。

表2:柠檬酸用量对双金属ce-ga/h-zsm-5催化剂nox转化率的影响

实施例6:

按照实施例1中的原料与步骤,不同的是,将分子筛载体变为cha结构分子筛,即h-ssz-13(si/al=24)分子筛;按照实施例1中催化剂在ch4-scr反应的应用方法,结果表明,550℃时氮氧化物生成氮气的转化率约为82%,小于采用h-zsm-5分子筛的转化率。

实施例7:

按照实施例1中的原料与步骤,得到2%ce-4%ga/h-zsm-5催化剂;按照实施例1中催化剂在ch4-scr反应的应用方法,不同的是,反应体积空速分别调整为40000h-1和90000h-1,结果表明,550℃时氮氧化物生成氮气的转化率分别为90%和72%。

实施例8:

按照实施例1中的原料与步骤,得到2%ce-4%ga/h-zsm-5催化剂;按照实施例1中催化剂在ch4-scr反应的应用方法,不同的是,反应混合气中,ch4组分的含量调整为2750ppm和5500ppm,即甲烷/氮氧化物摩尔比调整为1和2,结果表明,550℃时氮氧化物生成氮气的转化率分别为85%和81%。

实施例9:催化剂的稳定性实验

按照实施例1中的原料与步骤,得到2%ce-4%ga/h-zsm-5催化剂;按照实施例1中催化剂在ch4-scr反应的应用方法,不同的是,反应混合气中,h2o组分的含量调整为0或6%,以此考察水蒸气对催化剂性能的影响。

图4为ce-ga/h-zsm-5催化剂在ch4-scr反应中的水蒸气稳定性测试。从图中可以看出,当反应体系中不存在水蒸气时,在最初30小时内no转化为n2的转化率保持在约92%;当在反应体系中引入6%水蒸气后,no转化为n2的转化率仅降至约89%,并可保持150小时;当再次去除混合气中的水蒸气后,no转化为n2的转化率基本可恢复至无水状态的水平。结果表明,水蒸气对该催化剂反应活性的影响可逆,该催化剂具有优异的稳定性。

对比例1:单组分ga/h-zsm-5催化剂的ch4-scr活性

按照实施例1中的原料与步骤,不同的是,仅添加金属ga而不加入金属ce,按照ga:h-zsm-5=0.03、0.04和0.05(质量比)的配比,制得金属ga负载量分别为3%、4%和5%的单组分ga/h-zsm-5催化剂;按照实施例1中催化剂在ch4-scr反应的应用方法,结果如图5所示,可以看出,no转化为n2的最高转化率分别为59%、49%和52%,远低于双组分ce-ga/h-zsm-5催化剂的最高转化率。

完整全部详细技术资料下载


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/301721.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-26
下一篇2023-04-26

发表评论

登录后才能评论

评论列表(0条)

    保存