硅灰石改性及填充工程塑料ABS的研究

硅灰石改性及填充工程塑料ABS的研究,第1张

张凌燕 赖伟强 唐华伟 郑光军

(武汉理工大学资源与环境工程学院,湖北武汉 430070)

摘要 对硅灰石粉的表面改性效果及填充ABS 塑料力学性能的研究表明,不同的改性剂、改性剂用量、改性时间等工艺条件对硅灰石的改性效果有重要影响。经γ-(甲基丙烯酰氧基)丙基三甲氧基硅烷改性后的硅灰石填充工程塑料ABS,增强了复合材料的刚性和熔体流动,其他力学性能虽有小幅下降,但不影响其在工程上的使用;同时降低了ABS塑料使用的成本,在填充量为20%时,可降低成本15%[1~6]。

关键词 硅灰石;改性;填充;ABS。

第一作者简介:张凌燕,湖北武汉理工大学资源与环境工程学院副教授,主要研究方向:非金属矿物材料及其应用。电话:027-87882128。

硅灰石属于链状偏硅酸盐,化学分子式为CaSiO3,粉碎后,颗粒呈纤维状或针状。硅灰石无毒,具有低吸油性、低吸水性、热稳定性和化学稳定性,白度高,并有独特的粉体纤维,应用广泛。而改性硅灰石粉体,因其表面性能得到改善,提高了其疏水亲油的能力,应用于塑料、橡胶基体材料中,能更均匀地分散,并与基体材料有很强的亲和性能,可改善塑料、橡胶制品的力学性能和抗老化性能。工程塑料是指可作为结构性材料使用的塑料,可在较宽的温度范围和较长的时间内保持优异性能,并能承受较高机械应力和在较为苛刻的化学物理环境中长期使用[1]。但与通用塑料相比,工程塑料因价格昂贵,使用受到限制。本试验对硅灰石进行表面改性,分析了改性条件对改性效果的影响,并对改性硅灰石填充ABS的性能进行了研究。

一、试验

(一)主要原料、设备及仪器

树脂基材为ABS(丙烯腈、丁二烯、苯乙烯共聚物),中国石油吉林石化分公司;硅灰石微粉,原矿来自青海都兰县海寺,硅灰石矿物含量为大于90%,CaO 41.74%;SiO251.25%,d90为13.81μm,长径比为11,白度80;硅烷偶联剂,γ-氨丙基三乙氧基硅烷(WD-50)、γ-(2,3-环氧丙氧基)丙基三甲基硅烷(WD-60)、γ-(甲基丙烯酰氧基)丙基三甲氧基硅烷(WD-70),武汉大学有机硅新材料股份有限公司。改性助剂氨水(分析纯),市售;塑料助剂,有增塑剂(DEP)、抗氧剂(1010)、分散剂(石蜡)、润滑剂(硬脂酸钙)等。

实验室用高速捏合机,GH-1ODY型,北京英特塑料机械总厂;双螺杆配混挤出机,SJSH-30型,南京橡塑机械厂;冷切粒机,LQ-100,南京橡塑机械厂;注射成型机,CJ50E-2型,震德塑机厂;静滴接触角测量仪,JC2000A,上海中晨数字技术设备有限公司;扫描电镜,日本JEOL公司;电子拉力试验机,RGD-5,深圳市瑞格尔仪器有限公司;巴氏硬度计,HBa-1型,无锡市计量科学研究所;熔体流动速率仪,ZRZ-40型,深圳新三思材料检测有限公司。

(二)硅灰石微粉表面改性

由于硅灰石微粉具有亲水疏油性,与ABS的兼容性差,为提高它与ABS的兼容性,须对它进行表面改性,从而改善它在聚合物体系中的分散性。采用GH-10DY型高速捏合机进行表面改性,搅拌速度1250 r/min,改性助剂氨水用量为1%,氨水用蒸馏水以2∶1的比例稀释,改性工艺流程见图1[2,5]。

图1 硅灰石微粉表面改性工艺流程

(三)改性效果测试

1.润湿接触角

取改性硅灰石微粉压片,用静滴接触角测量仪测量其润湿接触角,测试溶液为水。

2.活化指数

取一定量的改性硅灰石微粉加到烧杯中,加入蒸馏水,经剧烈搅拌,静止分层后,分别取出上浮物M1和下沉物M2,干燥后,称其质量,活化率为M1/(M1+M2)。

(四) ABS-硅灰石复合材料制备

一次的试样总量为600g;塑料助剂用量:DEP 2%、抗氧剂1010 0.5%、石蜡0.5%、硬脂酸钙0.2%。挤出造粒工艺参数:挤出温度170~185℃,螺杆转速140~160 r/min。注射成型工艺参数:温度190~220℃,注射时间6s,保压时间14s。ABS 硅灰石复合材料制备工艺流程[3,5]:(改性硅灰石微粉,ABS和助剂)→混料→挤出复合→造粒→注射成型→后处理→性能测试。

(五)复合材料性能测试方法

拉伸性能,GB/T1040—1992;弯曲性能,GB 9341—88;冲击性能,GB/T 1843—80(89);巴氏硬度,GB/T 9342—1988;熔体流动速率,GB3682—83。

二、试验结果与讨论

(一)不同改性工艺条件对改性效果的影响

1.不同改性剂的影响

以相同的改性剂用量1%和相同的改性条件(改性温度120℃、改性时间20 min),分别采用WD-50、WD-60、WD-70作为改性剂,对硅灰石微粉进行改性,结果见表1。从表1可看出,WD-70的改性效果比其他两种的好。

表1 不同型号硅烷改性剂对硅灰石微粉改性效果

2.不同改性剂用量的影响

以WD-70作为改性剂,改性温度120℃、改性时间20 min,对不同改性剂用量进行对比试验,结果见图2。从图2可看出,随改性剂用量增加,润湿接触角和活化指数都在不断增大,当改性剂用量大于1%时,增加趋势变缓。综合经济因素考虑,改性剂用量应控制在1%左右。

3.改性时间的影响

以WD-70作为改性剂,改性剂用量1%,改性温度为120℃,对不同改性时间进行对比试验,结果见图3。从图3可看出,随改性时间的延长,润湿接触角和活化指数都在不断增大,当改性时间长于20 min时,增加趋势变缓,随着时间的延长,改性效果增加不明显。因此,较适宜的改性时间应为20 min。

图2 改性剂用量与改性效果的关系

图3 改性时间与改性效果的关系

(二)硅灰石填充量对复合材料性能的影响

从图4a可看出,复合材料的拉伸强度随硅灰石填充量的增加,先增大后减小,在硅灰石填充量为20%时,达到峰值。说明20%是硅灰石填充ABS拉伸强度的临界量,超过此填充量,硅灰石粉体在ABS树脂连续相中的分散性变差,硅灰石与树脂基体界面粘结变差,易产生界面脱黏。但填充量20%的复合材料的拉伸强度仍低于纯ABS,不过下降幅度较小,仅下降了13.2%,且显著高于ABS树脂国标GB 12672-90的最低要求(27MPa)。从图4a还可看出,复合材料的弯曲强度随硅灰石填充量的增加而减少,但其最小值也高于上述国标的最低要求(47MPa)。

图4 硅灰石填充量对复合材料性能的影响

从图4b可看出,复合材料的缺口冲击强度随硅灰石填充量的增加而下降,而其硬度则随硅灰石的填充量增加而增大,最高能达到纯ABS的2.7倍。这说明硅灰石的加入,使复合材料的韧性变差,而刚性得到增强。

从图4 c可看出,复合材料的熔体流动速率随硅灰石填充量的增加而增大,最高能达到纯ABS的1.75倍,这说明硅灰石的加入,使复合材料的流动性得到改善。

(三)复合材料拉伸断面的微观结构分析

从图5可看出,随硅灰石填充量的增加,硅灰石粒子在ABS基体中的分散性变差,易聚集成团,使复合材料在微观上出现不均匀性。同时在拉伸断面上还能看到,硅灰石粒子被不同程度拔出的现象。从图5 c可明显看到,有大颗粒的硅灰石粒子被拔出的痕迹。这说明硅灰石粒子与ABS基体的黏结不佳,在受外力作用时,易于脱黏,导致复合材料力学性能有所下降。相比较而言,图5b的两相界面较模糊,硅灰石粒子被拔出的也较少。说明硅灰石粒子与ABS基体结合较好,力学性能也相对较好,这与前(二)节分析的结果相吻合。

图5 复合材料拉伸断面SEM 图

硅灰石填充量:a—10%;b—20%;c—40%

三、结论

1)对硅灰石改性工艺条件的研究表明,γ-(甲基丙烯酰氧基)丙基三甲氧基硅烷(WD-70)比γ-氨丙基三乙氧基硅烷(WD-50)和γ-(2,3-环氧丙氧基)丙基三甲基硅烷(WD-60)的改性效果要好。在温度120℃、WD-70用量1%、时间20 min的条件下,硅灰石的改性效果较好。

2)硅灰石填充ABS的力学性能研究结果表明,改性硅灰石的加入,使复合材料的刚性和熔体流动性得到增强,其他力学性能虽有所下降,但不影响其在工程上的使用,且能降低成本。从试验结果看,硅灰石较适宜的填充量为20%,此填充量的复合材料的成本比纯ABS降低了15%。同时,硅灰石作为工程塑料的填料,与其他填料相比具有自己的优势:与轻钙、滑石粉相比,硅灰石填充体系黏度低,可进行高填充,有利于节约树脂、降低成本;与碳酸钙相比,硅灰石填充体系耐化学腐蚀性好,对增塑剂吸收量小,制品表面光洁度好;与玻璃纤维相比,则具有较大的价格优势;硫酸钙、滑石粉和白炭黑等,一般都含结晶水,受热时有脱水问题,而硅灰石则具有较好的热稳定性。因此,硅灰石是一种较好的工程塑料填料。

参考文献

[1]杨世英,陈栋传.鲍靖工程塑料手册[M].北京:中国纺织出版社,1994

[2]郑水林.粉体表面改性[M].北京:建材工业出版社,1995

[3]刘英俊,刘伯元.塑料填充改性[M].北京:中国轻工业出版社,1998

[4]闻狄江.复合材料原理[M].武汉:武汉工业大学出版社,1998

[5]牛艳萍.硅酸盐矿物-聚合物复合材料的制备及其界面机理的研究[D].武汉:武汉理工大学,2005

[6]张凌燕,赖伟强.不同形态矿物复合增强LDPE的研究[J].塑料工业,2006(10):48

Study on Surface Modification of Wollastonite &Application of Modified Wollastonite in ABS

Zhang Lingyan,Lai Weiqiang,Tang Huawei,Zheng Guangjun

(College of Resource and Environment Engineering,Wuhan University of Technology,Wuhan,Hubei 430070)

Abstract:Surface modification of wollastonite and mechanical property of wollastonite-filled ABS were studied.The results showed that different modification reagents,quantity of modification reagents,time of modification would affect surface modification of wollastonite.Wollastonite treated by γ-methacryloxypropyl trimethoxy silane filled ABS can improve composite’s rigidity,but its other mechanical properties had a little decline.Wol lastonite-filled ABS not only can reduce product’s cost,but also does not effect its application in engineering.When filling ratio of wollastonite reaches 20%,the cost will be reduced by l5%.

Key words:wollastonite,modification,filling,ABS.

相变材料(PCM) 具有结构简单、潜热高、成本低等优点,在被动散热领域已成为研究热点。然而,由于PCM导热性差、易泄漏、机械性能差,因此应用范围有限,特别是在电池热管理方面。本研究通过将反应物溶解于有机溶剂中,成功制备了新型柔性复合材料SBS@PA/EG,并用于电池热管理(BTM)系统。其中,丁二烯苯乙烯(SBS)为支撑材料,石蜡(PA)为相变材料,膨胀石墨(EG)作为导热增强剂。通过X射线衍射仪、扫描电子显微镜和热导率测量研究了复合PCM的化学性能和结构,并通过测试拉伸/弯曲强度来分析其稳定性。此外,分析了电池模块的最高温度和与充电状态的温差的关系。在5℃放电过程中,电池模块的最高温度可以维持在46℃以下,温差控制在4℃以内。因此,柔性复合SBS@PA/EG可以很好地应用于BTM系统和更广泛的热管理系统。

作者制备了不同配比的SBS@PA/EG材料,具体配比见表1。首先,将SBS颗粒在定量CCl4中溶解24 h直至获得玻璃态SBS。加热PA粒子,然后在70C的水浴温度中保持并熔化。待PA完全融化后,加入不同质量比的EG,然后用磁力搅拌器搅拌混合物。完全混合的复合PCM倒入模具中固化,使用粉碎机加工PCM模块,获得PA/EG复合PCM粉末。最后,将PA/EG复合PCM粉体添加到玻璃状SBS中并充分混合,然后压缩成模块(完整的制备流程见下方示意图)。

接下来作者采用XRD、SEM对材料进行了化学和微观结构表征。在万能试验机上对SBS@PA/EG复合材料进行拉伸强度和弯曲强度的测试。使用DSC研究复合材料的热特性。采用制备的PCM搭建了PCM BTM系统,通过对电池模组进行不同倍率的放电(1C,3C,5C),测量电池的温度。所有用的单体电池容量为16Ah(具体见表2)。每个模组由6只电池组成,组装成2*3的结构。6个模组进行串联,排列成2列*3行的结构。

下图为电池模组的结构示意图。为了清楚地反映电池的温度变化,电池模块中的6个电池各设置了两个热电偶,热电偶可以分别采集电池两侧几何中心的温度。以两者的平均温度作为电池的温度。

PA,EG,SBS和不同配比的SBS@PA/EG的XRD见下图。在19.96°的峰对应SBS。PA的XRD结果显示了19.57°和25.08°的两个尖峰。EG的XRD图谱出现26.3°的特征峰,归属于EG(002)。五种复合PCM的XRD曲线基本一致,没有多余的峰,表明材料之间没有其他的化学反应,复合材料很好地维持了材料的结构和特性。

不同质量比的SBS对复合PCM的机械特性影响见下图。更高比例的SBS能增强材料的柔韧性。2:1复合PCM的拉伸强度介于0.1至0.25MPa之间,而1:1复合PCM的拉伸强度介于0.25至0.38MPa之间.。2:1复合PCM的弯曲强度介于0.2至0.3MPa之间,而1:1复合PCM的弯曲强度介于0.5至0.75MPa之间。此外,当EG含量的增加达到一定程度后,材料的机械性能有下降的趋势。结果表明,在复合材料中加入4%的EG是提高材料力学性能的最佳浓度。从下图可以更直观地观察到不同样品承受外力的能力。

纯PA在外力作用下具有较强的刚性和脆性。当PA/EG被添加到SBS中,施加一定的外力时,1:1复合PCM可以以一定角度弯曲。与1:1复合相变材料相比,当受到外力时,2:1复合相变材料更易弯曲,弯曲180没有骨折,并显示出优越的软性和柔性,产生很大程度的弯曲变形。从以上分析可以得出SBS是提高复合PCM的柔软度和柔韧性的主要因素,这与复合PCM抗拉强度和抗弯强度结果一致。

不同温度下复合材料在外力作用下的沉降程度见下图。随着温度的升高,PA开始熔化进入SBS内部,复合材料的刚性开始降低。然而,在50C(电池表面的共同工作温度)下,1:1复合材料仍然可以起到良好的弹性体作用,保护电池免受外部冲击。在PA粉熔融之前,SBS@PA/EG样品呈现一定程度的刚度。当温度达到PA的熔化温度时,可以观察到SBS的柔性。SBS在保持试样形状和结构稳定方面起着重要作用。

为了进一步分析复合材料SBS@PA/EG力学性能的变化,采用SEM表征了PA、纯SBS、 EG、 PA/EG和SBS@PA/EG的1:1复合材料的微观结构。可以观察到,SBS的结构紧凑,具有良好的块式结构,这使得它具有一定的韧性,在弯曲时不易折断。EG能很好吸收PA,减少了熔化过程中的泄漏。与此同时,因为材料本身的空隙很小,可以紧密覆盖PCM粉末。将PA/EG粉添加到SBS中,得到的复合材料PCM呈条块结构。这是因为在PCM粉末的制备过程中,当进行SBS涂层时,其中一些物质在搅拌过程中容易聚集。然而,复合PCM仍然保持较高的密度,归因于它良好的拉伸和弯曲性能。

随后作者研究了材料在55℃下连续加热的质量变化。未经处理的PA块体产生大量泄漏,可在25分钟内完全熔化成液体。1∶1的复合材料SBS@PA/EG,溶化PA略有渗出,但样品的形状完好无损。与未经处理的PA块相比,复合材料SBS@PA/EG的形状相对稳定并慢慢地渗透到外表面;这种渗透的原因是即使在温度达到熔点之后,SBS包围了PA/EG,限制PA的自由流动。随着SBS浓度的增加,PA/EG也开始更积极地阻止PA的泄漏;因此,2:1合成的复合SBS@PA/EG几乎不存在PA泄漏。

样品的质量保持率随加热时间的变化如下图所示,包括1:1和2:1组合SBS@PA/EGs。连续加热5 h,所有样品的质量保持率均在99%以上。随着SBS质量分数的增加,PA/EG粉末涂层的覆盖率增加,涂层致密化程度提高;因此,2:1复合材料SBS@PA/EG的质量保持率高于1:1复合材料。同时,考虑到EG的多孔结构和对PA的吸附效率增加,随着EG含量的增加,PA的质量泄漏减弱。此外,通过分析SBS的重要作用,可以形成致密的SBS。因此,它在很大程度上影响了复合相变材料的泄漏。

EG可以提高样品的导热系数。不同EG质量分数的SBS@PA/EG复合材料的导热系数如下图所示。随着EG质量的增加,复合相变材料的导热系数以指数的方式增大。

熔融焓(△H)和熔峰温度(Tp)是评价PCM的重要指标。复合材料SBS@PA/EG的DSC升温曲线如下图所示。1:1 SBS@PA/EG和2:1组合SBS@PA/EG的焓值分别为79.8和44.9 J/g,前者几乎是后者的两倍。EG本身对PCM的焓值几乎没有影响。只有当EG的质量分数增加,PA减小时,焓值才会发生变化。因此,1∶1的组合SBS@PA/EG与4% EG是理想的热管理应用的备选,它不仅提供了一个具有相当的焓值,同时也提高了灵活性,以及适当的SBS和EG含量时的热性能。因为PA的过冷度相对较小,复合材料在凝固过程中PA能稳定结晶。此外,复合材料1:1 SBS@PA/EG的热循环性能比SBS含量增加到2:1时更加稳定。

最高温度(Tmax)与最低温度(Tmin)和电池模块的荷电状态(SOC)的关系见下图。从1C的温度曲线可知,电池模组的最高温度仅为34.5℃,表明没有达到PA的熔点。SBS@PA/EG(4%)的Tmin增加至33.8℃,高于没有辅助的电池模组温度(33.2℃)。当放电倍率增加时,电池的最大温度快速增加,放电过程中容量的下降变陡。在3C放电速率时,电池模块在无辅助情况下的最大温度达到43C,电池模块温升超过10C,严重损坏电池。然而,采用SBS@PA/EG复合材料作为热管理系统的电池模块,最大温度刚好为40C,有效地控制了电池的最高温度。

通过比较电池模组的最大温度差异(△T),综合分析了复合SBS@PA/EG施加至BTM系统所带来的影响。随着放电倍率增加,电池模组的△T快速增加。结果表明,SBS具有较大的弹性网络,有利于保持复合PCM的形状,EG具有较高的导热系数,有利于保持复合PCM的均匀温度。

下图为在5℃放电速率下,模块中间电池在10次充放电循环中的温度曲线。在充放电循环过程中,在没有辅助冷却系统的电池模块中热积累更明显,第三个循环之后模块的最高温度明显超过了54C。添加SBS@PA/EG的电池模块,第三个循环后温度可以稳定在51C。主要原因是SBS@PA/EG复合材料对于电池模块可以提供稳定的潜热和高导热性来控制温度,从而保证了电池模块在高速率下获得稳定的吸热和放热过程。

考虑到电池模块的散热还有温差的变化,可以观察到在没有冷却辅助时,电池产生的热量被释放并转移到周围,由于电池模块之间的散热间隙相对较小,热量不可避免地发生聚集,所以模块内的中间电池会同时受到自身产热和外部传热的影响,导致电池温度急剧上升,导致温差较大。PA可以吸收一些电池释放的热量,让电池及时冷却。而导热系数较低的PA具有较好的热稳定性,限制了热管理的效果。更重要的是,当电池模块添加了复合SBS@PA/EG时,具有良好导热网络的EG和支撑复合材料结构稳定性的SBS能发挥与PA的协同作用,起到及时吸收和散热的作用。复合材料SBS@PA/EG能有效控制温升和平衡温度的差异。因此,采用SBS@PA/EG复合材料的电池模块,可达到理想的热管理效果。

参考文献:Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials;Applied Thermal Engineering 183 (2021) 116151;Qiqiu Huang, Xinxi Li, Guoqing Zhang, Jian Deng, Changhong Wang.

来源:新能源Leader,作者:逐日

1

19个金币已到账

金币可兑换现金

立即提现

锂电池板块:八家蓄势待发锂电池概念潜力股

沉浮十一年

锂离子电池——新电解液可使锂离子电池高温下继续工作而不会起火

风趣星空m

锂离子负极材料如何选择

冠猴

看更多热点资讯


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/301780.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-26
下一篇2023-04-26

发表评论

登录后才能评论

评论列表(0条)

    保存