采用OLS的回归分析方法存在几方面的限制:
(1)不允许有多个因变量或输出变量
(2)中间变量不能包含在与预测因子一样的单一模型中
(3)预测因子假设为没有测量误差
(4)预测因子间的多重共线性会妨碍结果解释
(5)结构方程模型不受这些方面的限制
SEM的优点:
(1)SEM程序同时提供总体模型检验和独立参数估计检验;
(2)回归系数,均值和方差同时被比较,即使多个组间交叉;
(3)验证性因子分析模型能净化误差,使得潜变量间的关联估计较少地被测量误差污染;
(4)拟合非标准模型的能力,包括灵活处理追踪数据,带自相关误差结构的数据库(时间序列分析),和带非正态分布变量和缺失数据的数据库。
构方程模型最为显著的两个特点是:
(1)评价多维的和相互关联的关系;
(2)能够发现这些关系中没有察觉到的概念关系,而且能够在评价的过程中解释测量误差。
1、最小二乘法的典型应用是求解一套x和y的成对数据对应的曲线(或者直线)方程。
其思想是:设y和x之间的关系可以用一个公式在表示,但其系数为待定系数。然后,将各个点的实测数据与计算求得的数据相减,得到“误差”或者不符值(有正有负,但其平方都是正的),将这些不符值的平方相加,得到总的“误差”。通过调整公式中的各个系数,使得误差平方和最小,那么就确定了y和x之间的方程的最好结果。求解最小二乘问题的过程中没有提及概率问题。
2、而极大似然估计值,是用于概率领域的一种方法,和最小二乘法是两个领域的。这种方法是应用求极大值的方法,让某一个公式求导值为0,再根据情况判断该极值是否是合乎要求。极大似然估计法可以用于正态分布中 μ, σ2的极大似然估计。极大似然估计法就是要选取类似的数值作为参数的估计值,使所选取的样本在被选的总体中出现的可能性为最大。
算法不同,需要看软件对数据的要求。我找到一篇博客,你看下:
结构方程建模中的PLS和LISREL方法比较
第一,分布假设不同。PLS为了处理缺乏理论知识的复杂问题,采取“软”方法,避免LISREL模型严格的“硬”假设。这样,不论模型大小,PLS方法都可以得到“瞬时估计(instant estimation)”,并得到渐进正确的估计,即PLS方法没有分布要求,而LISREL方法假设显变量的联合分布为多元正态。
第二,准确性取向不同。PLS估计在样本量很大和每个隐变量的显变量很多时,是一致(consistency)和基本一致(consistency at large)的,但LISREL估计在大样本时是最优的(置信区间渐近最小)。最优性包括一致性,但一致性不包括最优性。因此,PLS和LISREL对同一参数的估计都在一致性的范围内。两种估计的差别不可能、也不应该很大。
第三,假设检验不同。PLS方法采用Stone(1974)和Geisser(1974)的交互验证(cross-validation)方法检验,考察因果预测关系(8)。LISREL方法一般使用似然比检验,考察观测矩阵S和理论矩阵Σ的拟合程度。
不是我写的,你去感谢博主吧:
来自:http://blog.163.com/fjm82@126/blog/static/3335303020061014111026311/
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)