因为hadoop是海量数据的处理能力,所以服务器一定不能太小配置了,跑不动了就没实际用途了。最好使用4核8G内存及以上配置。
因为这方面内容较多,这里也写不开那么多内容,所以你可以留言或到我的博客上搜索相关内容,老魏有写过教程,还不止一篇,都挺详细的内容,可以帮助你入门。
理论上可以的,vmware虚拟机和云服务器其实和传统物理服务器用起来没差别。但如果你说的云服务器是公有云,是vmware在你的局域网,不推荐组合起来搭建hadoop,因为互联网的网络延迟比本地高,集群会不稳,非要做的话,vmware虚拟机需要用dnat映射地址到公网hadoop2.0已经发布了稳定版本了,增加了很多特性,比如HDFS HA、YARN等。最新的hadoop-2.4.1又增加了YARN HA注意:apache提供的hadoop-2.4.1的安装包是在32位操作系统编译的,因为hadoop依赖一些C++的本地库,
所以如果在64位的操作上安装hadoop-2.4.1就需要重新在64操作系统上重新编译
(建议第一次安装用32位的系统,我将编译好的64位的也上传到群共享里了,如果有兴趣的可以自己编译一下)
前期准备就不详细说了,课堂上都介绍了
1.修改Linux主机名
2.修改IP
3.修改主机名和IP的映射关系
######注意######如果你们公司是租用的服务器或是使用的云主机(如华为用主机、阿里云主机等)
/etc/hosts里面要配置的是内网IP地址和主机名的映射关系
4.关闭防火墙
5.ssh免登陆
6.安装JDK,配置环境变量等
集群规划:
主机名 IP 安装的软件 运行的进程
HA181 192.168.1.181 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
HA182 192.168.1.182 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
HA183 192.168.1.183 jdk、hadoop ResourceManager
HA184 192.168.1.184 jdk、hadoop ResourceManager
HA185 192.168.1.185 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
HA186 192.168.1.186 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
HA187 192.168.1.187 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
说明:
1.在hadoop2.0中通常由两个NameNode组成,一个处于active状态,另一个处于standby状态。Active NameNode对外提供服务,而Standby NameNode则不对外提供服务,仅同步active namenode的状态,以便能够在它失败时快速进行切换。
hadoop2.0官方提供了两种HDFS HA的解决方案,一种是NFS,另一种是QJM。这里我们使用简单的QJM。在该方案中,主备NameNode之间通过一组JournalNode同步元数据信息,一条数据只要成功写入多数JournalNode即认为写入成功。通常配置奇数个JournalNode
这里还配置了一个zookeeper集群,用于ZKFC(DFSZKFailoverController)故障转移,当Active NameNode挂掉了,会自动切换Standby NameNode为standby状态
2.hadoop-2.2.0中依然存在一个问题,就是ResourceManager只有一个,存在单点故障,hadoop-2.4.1解决了这个问题,有两个ResourceManager,一个是Active,一个是Standby,状态由zookeeper进行协调
安装步骤:
1.安装配置zooekeeper集群(在HA185上)
1.1解压
tar -zxvf zookeeper-3.4.5.tar.gz -C /app/
1.2修改配置
cd /app/zookeeper-3.4.5/conf/
cp zoo_sample.cfg zoo.cfg
vim zoo.cfg
修改:dataDir=/app/zookeeper-3.4.5/tmp
在最后添加:
server.1=HA185:2888:3888
server.2=HA186:2888:3888
server.3=HA187:2888:3888
保存退出
然后创建一个tmp文件夹
mkdir /app/zookeeper-3.4.5/tmp
再创建一个空文件
touch /app/zookeeper-3.4.5/tmp/myid
最后向该文件写入ID
echo 1 > /app/zookeeper-3.4.5/tmp/myid
1.3将配置好的zookeeper拷贝到其他节点(首先分别在HA186、HA187根目录下创建一个weekend目录:mkdir /weekend)
scp -r /app/zookeeper-3.4.5/ HA186:/app/
scp -r /app/zookeeper-3.4.5/ HA187:/app/
注意:修改HA186、HA187对应/weekend/zookeeper-3.4.5/tmp/myid内容
HA186:
echo 2 > /app/zookeeper-3.4.5/tmp/myid
HA187:
echo 3 > /app/zookeeper-3.4.5/tmp/myid
2.安装配置hadoop集群(在HA181上操作)
2.1解压
tar -zxvf hadoop-2.4.1.tar.gz -C /weekend/
2.2配置HDFS(hadoop2.0所有的配置文件都在$HADOOP_HOME/etc/hadoop目录下)
#将hadoop添加到环境变量中
vim /etc/profile
export JAVA_HOME=/app/jdk1.7.0_79
export HADOOP_HOME=/app/hadoop-2.4.1
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin
#hadoop2.0的配置文件全部在$HADOOP_HOME/etc/hadoop下
cd /home/hadoop/app/hadoop-2.4.1/etc/hadoop
2.2.1修改hadoop-env.sh
export JAVA_HOME=/app/jdk1.7.0_79
2.2.2修改core-site.xml
<configuration>
<!-- 指定hdfs的nameservice为ns1 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://ns1/</value>
</property>
<!-- 指定hadoop临时目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/app/hadoop-2.4.1/tmp</value>
</property>
<!-- 指定zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>HA185:2181,HA186:2181,HA187:2181</value>
</property>
</configuration>
2.2.3修改hdfs-site.xml
<configuration>
<!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>ns1</value>
</property>
<!-- ns1下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.ns1</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn1</name>
<value>HA181:9000</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn1</name>
<value>HA181:50070</value>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn2</name>
<value>HA182:9000</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn2</name>
<value>HA182:50070</value>
</property>
<!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://HA185:8485HA186:8485HA187:8485/ns1</value>
</property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/app/hadoop-2.4.1/journaldata</value>
</property>
<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.ns1</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property>
<!-- 使用sshfence隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/hadoop/.ssh/id_rsa</value>
</property>
<!-- 配置sshfence隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
</configuration>
2.2.4修改mapred-site.xml
<configuration>
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
2.2.5修改yarn-site.xml
<configuration>
<!-- 开启RM高可用 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<!-- 指定RM的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>HA183</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>HA184</value>
</property>
<!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>HA185:2181,HA186:2181,HA187:2181</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
2.2.6修改slaves(slaves是指定子节点的位置,因为要在HA181上启动HDFS、在HA183启动yarn,
所以HA181上的slaves文件指定的是datanode的位置,HA183上的slaves文件指定的是nodemanager的位置)
HA185
HA186
HA187
2.2.7配置免密码登陆
#首先要配置HA181到HA182、HA183、HA184、HA185、HA186、HA187的免密码登陆
#在HA181上生产一对钥匙
ssh-keygen -t rsa
#将公钥拷贝到其他节点,包括自己
ssh-copy-id HA181
ssh-copy-id HA182
ssh-copy-id HA183
ssh-copy-id HA184
ssh-copy-id HA185
ssh-copy-id HA186
ssh-copy-id HA187
#配置HA183到HA184、HA185、HA186、HA187的免密码登陆
#在HA183上生产一对钥匙
ssh-keygen -t rsa
#将公钥拷贝到其他节点
ssh-copy-id HA184
ssh-copy-id HA185
ssh-copy-id HA186
ssh-copy-id HA187
#注意:两个namenode之间要配置ssh免密码登陆,别忘了配置HA182到HA181的免登陆
在HA182上生产一对钥匙
ssh-keygen -t rsa
ssh-copy-id -i HA181
2.4将配置好的hadoop拷贝到其他节点
scp -r /app/hadoop-2.5.1/ HA182:/app/
scp -r /app/hadoop-2.5.1/ HA183:/app/
scp -r /app/hadoop-2.5.1/ HA184:/app/
scp -r /app/hadoop-2.5.1/ HA185:/app/
scp -r /app/hadoop-2.5.1/ HA186:/app/
scp -r /app/hadoop-2.5.1/ HA187:/app/
###注意:严格按照下面的步骤
2.5启动zookeeper集群(分别在HA185、HA186、tcast07上启动zk)
cd /app/zookeeper-3.4.5/bin/
./zkServer.sh start
#查看状态:一个leader,两个follower
./zkServer.sh status
2.6启动journalnode(分别在在HA185、HA186、HA187上执行)
cd /app/hadoop-2.5.1
hadoop-daemon.sh start journalnode
#运行jps命令检验,HA185、HA186、HA187上多了JournalNode进程
2.7格式化ZKFC(在HA181上执行即可) hdfs zkfc -formatZK
2.8格式化HDFS
#在HA181上执行命令:
hdfs namenode -format
#格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里我配置的是/app/hadoop-2.4.1/tmp,然后将/weekend/hadoop-2.4.1/tmp拷贝到HA182的/weekend/hadoop-2.4.1/下。
scp -r tmp/ HA182:/app/hadoop-2.5.1/
##也可以这样,建议hdfs namenode -bootstrapStandby
2.9启动HDFS(在HA181上执行)
sbin/start-dfs.sh
2.10启动YARN(#####注意#####:是在HA183上执行start-yarn.sh,把namenode和resourcemanager分开是因为性能问题,因为他们都要占用大量资源,所以把他们分开了,他们分开了就要分别在不同的机器上启动)
sbin/start-yarn.sh
到此,hadoop-2.4.1配置完毕,可以统计浏览器访问:
http://192.168.1.181:50070
NameNode 'HA181:9000' (active)
http://192.168.1.182:50070
NameNode 'HA182:9000' (standby)
验证HDFS HA
首先向hdfs上传一个文件
hadoop fs -put /etc/profile /profile
hadoop fs -ls /
然后再kill掉active的NameNode
kill -9 <pid of NN>
通过浏览器访问:http://192.168.1.182:50070
NameNode 'HA182:9000' (active)
这个时候HA182上的NameNode变成了active
在执行命令:
hadoop fs -ls /
-rw-r--r-- 3 root supergroup 1926 2014-02-06 15:36 /profile
刚才上传的文件依然存在!!!
手动启动那个挂掉的NameNode
sbin/hadoop-daemon.sh start namenode
通过浏览器访问:http://192.168.1.181:50070
NameNode 'HA181:9000' (standby)
验证YARN:
运行一下hadoop提供的demo中的WordCount程序:
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.4.1.jar wordcount /profile /out
OK,大功告成!!!
CID-74d21742-3e4b-4df6-a99c-d52f703b49c0
测试集群工作状态的一些指令 :
bin/hdfs dfsadmin -report 查看hdfs的各节点状态信息
bin/hdfs haadmin -getServiceState nn1 获取一个namenode节点的HA状态
sbin/hadoop-daemon.sh start namenode 单独启动一个namenode进程
./hadoop-daemon.sh start zkfc 单独启动一个zkfc进程
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)