消息队列,信号量,内存共享,这几个都是一样的原理。,只不过信号量分为有名与无名
目前网上可以查找到很多关于信号量的实现文章,但是讲解在linux下使用semaphore的文章比较少;c++ linux semaphore信号量的使用
sem_init函数是Posix信号量操作中的函数。sem_init() 初始化一个定位在 sem 的匿名信号量。value 参数指定信号量的初始值。 pshared 参数指明信号量是由进程内线程共享,还是由进程之间共享。如果 pshared 的值为 0,那么信号量将被进程内的线程共享,并且应该放置在这个进程的所有线程都可见的地址上(如全局变量,或者堆上动态分配的变量)。
如果 pshared 是非零值,那么信号量将在进程之间共享,并且应该定位共享内存区域(见 shm_open(3)、mmap(2) 和 shmget(2))。因为通过 fork(2) 创建的孩子继承其父亲的内存映射,因此它也可以见到这个信号量。所有可以访问共享内存区域的进程都可以用 sem_post(3)、sem_wait(3) 等等操作信号量。初始化一个已经初始的信号量其结果未定义。
返回值 :
sem_init() 成功时返回 0;错误时,返回 -1,并把 errno 设置为合适的值。
例子:
它的原型为: extern int sem_init __P ((sem_t *__sem, int __pshared, unsigned int __value))
头文件为: #include <semaphore.h>
sem为指向信号量结构的一个指针;
pshared不为0时此信号量在进程间共享,否则只能为当前进程的所有线程共享;
value给出了信号量的初始值。
函数sem_post( sem_t *sem )用来增加信号量的值当有线程阻塞在这个信号量上时,调用这个函数会使其中的一个线程不再阻塞,选择机制同样是由线程的调度策略决定的。
函数sem_wait( sem_t *sem )被用来阻塞当前线程直到信号量sem的值大于0,解除阻塞后将sem的值减一,表明公共资源经使用后减少。
函数sem_trywait ( sem_t *sem )是函数sem_wait()的非阻塞版本,它直接将信号量sem的值减一。
函数sem_destroy(sem_t *sem)用来释放信号量sem。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)