PACS系统的架构数据

PACS系统的架构数据,第1张

PACS有别于HIS、LIS等其它医学信息系统的最重要一点就是:海量数据存储。合理设计PACS的数据存储结构,是成功建设PACS的关键。一个大型的医院拥有大批现代化的大型医疗影像设备,每天影像检查产生的数据量多达4个GB左右(未压缩的原始数据),一年数据总量大约1200GB。而随着医院的业务飞速发展和新的影像设备的引进,这一数据量还可能进一步增长。此外,如何提高在线数据随机存取的效率也是一个非常关键的问题。

基于这一原因,现有的PACS医疗影像信息系统提供商多采用分级存储(HSM)的策略,将PACS存储分成在线存储和离线存储两级结构。用两种不同性能的存储介质来分别完成高容量和高效率的要求,低速超大容量存储设备(离线存储服务器)用作永久存储;高速存储设备(SAN)用作在线数据存储,确保在线数据的极高效存取。对于2年以上的历史数据保存在离线存储设备里,在线存储设备仅保存最近三年的数据。 DICOM文件是指按照DICOM标准而存储的医学文件。

DICOM文件由多个数据集组成。数据集表现了现实世界信息对象的相关属性,如病人姓名、性别、身高和体重等。数据集由数据元素组成,数据元素包含进行编 码的信息对象属性的值,并由数据元素标签(Tag)唯一标识。数据元素具有三种结构,其中两种具有类型表示VR(是否出现由传输语法决定),差别在于其长 度的表达方式,另外一种不包括类型表示。类型表示指明了该数据元素中的数据是哪种类型,它是一个长度为2的字符串,例如一个数据元素的VR为FL,表示该数据元素中存储的数据类型为浮点型。所有数据元素都包含标签、值长度和数据值体。

标签是一个16位无符号整数对,按顺序排列包括组号和元素号。数据集中的数据元素应按数据元素标签号的递增顺序组织,且在一个数据集中最多出现一次。

值长度是一个16或32位(取决于显式VR或隐式VR)无符号整数,表明了准确的数据值的长度,按字节数目(为偶数)记录。此长度不包含数据元素标签、VR、值长度字段。

数据值体表明了数据元素的值,其长度为偶数字节,该字段的数据类型是由数据元素的VR所明确定义。数据元素字段由三个公共字段和一个可选字段组成。 以现广东市场上的主流SUPER PACS系统为例。

目前SUPER PACS系统数据库共有36个表,按用途分为:公用表、数字胶片室专用表、放射专用表、超声专用表、远程专用表。其中起到关键性作用的是Patient、Study、Series、Image四个主表。

Patient表用于存放病人的基本信息,应用范围涉及到SUPER PACS的所有子系统;Study表用于存放病人的检查信息,应用范围涉及到SUPER PACS的所有子系统;Series表用于图象序列表的生成,应用范围涉及到SUPERPACSR DICOM放射系统;Image表用于保存系统图象记录。

数据库表间关系如右:

pacs的核心层服务器的构成是PACS、RIS主服务器及后备服务器。根据查询相关公开信息:PACS(picturearchivingandcommunicationsystem)意为影像归档和通信系统,核心层服务器的构成是PACS、RIS主服务器及后备服务器。

医学影像信息系统最初是从处理放射科的数字图像发展起来的。医学影像信息系统的前身是医学影像存档与通信系统(PACS,Picture Archiving &Communication System),最先推动PACS发展的动力来自于传统的相机厂家。这是因为当数字化浪潮到来的时候,他们首先就意识到这对他们的产品是一个不可逆转的巨大的冲击。 他们对各个厂家的设备连接能力有着最为清楚的了解;但作为传统的机械制造商,他们的计算机技术不够充足,对图像设备及图像处理也不够了解。

最初,许多设备制造商对开放的网络连接时有很大的抵触情绪。因为他们认为这是意义不大,并且对他们的利益有冲突,更深层的原因在于他们没有意识到,已经落在了信息技术发展的后面;更不了解,信息技术会给医疗影像行业带来什么。

随着计算机软硬件技术、多媒体技术和通信技术的高速发展以及医学发展需求的不断增长,PACS 标准化进程不断推进,尤其是ACR-NEMA(American College of Radiology &National Electrical Manufactures ′ Association,美国放射学会和美国电器制造商学会)DICOM(digital imaging and communications in medicine ,医学数字成像和通信标准)3.0标准的普遍接受,目前的PACS已扩展到所有的医学图像领域,如心脏病学、病理学、眼科学、皮肤病学、核医学、超声学以及牙科学等。PACS所包含的内容和能力已超越这一名词原来的含义,现在一般提到的PACS普遍是指包含了放射科信息系统(RIS,Radiology Information System)和医学影像存档与通信系统(PACS,Picture Archiving &Communication System)的医学影像信息系统。 PACS医学影像信息系统的技术发展主要体现在下列几方面:

1、 内部存储格式标准化为DICOM3.0

目前几乎所有欧美先进PACS厂家都用正式DICOM3.0文件格式来储存图像。设计旧一点的PACS还用ACR-NEMA2.0或SPI,只有很老的PACS才用到厂家自己定义的格式。用DICOM3.0格式有许多好处,其中一条是今后要更换PACS时不必找旧PACS厂家来转换数据。更重要的是用DICOM3.0文件格式可以随时加影像模式、加减和更改图像文件的内容。而传统的固定字段长度图像格式要添些东西就要全盘改动。

2、 采纳标准压缩算法来压缩图像文件。

新一代的PACS大多采用DICOM支持的标准压缩算法,如JPEG、JPEGLossless、JPEG2000、JPEG-LS和Deflate等。厂家用自定义算法来压缩图像的现象越来越少。

3、三级储存模式(在线、近线和离线)转变成两级(在线和备份)

目前欧美先进PACS厂家都在推行在线和备份两级储存。备份只是为了防意外,如火灾、地震等。在线用的是硬盘,用RAID(冗余存储磁盘阵列)加NAS(NetworkAttachedStorage)或SAN(StorageAreaNetwork)。而前几年PACS界最常见的是用三级图像储存模式:在线(online)、近线(near-line)和离线(off-line)。新的图像在线存在硬盘上、老一点的图像近线存在网路服务机里、再老一点的图像离线存在MOD或磁带里。

4、智能化医学影像平台

智能影像IT平台是医院信息系统的主要发展方向。能否最快获得全部诊断信息是评价影像工作站优劣的唯一标准。syngo .via是全球首个“会思考”的影像工作平台,它改变了传统的影像后处理理念,摒弃以软件为导向的传统CT工作站工作方式,开启以解剖或疾病诊断为导向的全新工作视角,突破性的成为直接服务疾病诊断的影像工作平台。让医生从繁琐的影像后处理中解脱出来,专注于医学诊断。

西门子syngo.via影像IT平台具有图像预处理功能,影像处理与扫描序列无缝链接,自动进行,无需任何人工干预;它有以疾病为导向的工作流程,自动进入按照疾病或解剖部位定制的工作模块;为每位医生量身定制其所需的诊断工作模块,任意顺序集成相关影像处理软件;带有诊断书签功能,能自动记录医生的每次病变测量、病变标记,方便跨科室医生间的交流和上级医生复核报告。

由于我国开发和引进PACS系统较晚,目前已经建立并有效运行的PACS系统并不多见(特别是内陆省市)。究其原因主要是标准化程度低、兼容性差,一般为封闭式的专用系统,既不经济、价格也昂贵,配置的硬件不够合理,对工作量大的医院缺乏强大的存储子系统,无法支持数据量巨大的常规放射影像,因此不能真正实现“无片化”管理。多数PACS系统也没有其有效的工作流程和自动化管理功能,也不能向临床诊断提供所需的全部,表现在在线信息少,响应速度慢。对网络安全、保密和符合法律要求方面还不可靠。现有的PACS系统设计大多数没有考虑技术发展和扩展需要的可能,难于与现有的HIS/RIS整合为一个系统。 各国的PACS系统研究和发展各具特点:美国PACS系统的研究和开发是在政府和厂商的资助下来进行的;欧洲的PACS系统由跨国财团、国家或地区的基金来支持,研究小组倾向于与某个主要厂商合作,着重于PACS建模和仿真及图像处理部件的研究;日本将PACS系统研究和开发列为国家计划,由厂商和大学医院来共同完成,厂商负责PACS系统集成和医院安装,医院负责系统临床评测,而且系统技术指标固定,没给医院研究人员留有多少修改的空间;韩国的PACS系统是在大型私营企业资助下所完成的。

PACS在国内发展方向重点在:应严格遵守国际技术标准的系统设计和完全开放式的体系结构,基于IHE、DICOM3.0和 HL-7(医疗保健)等国际标准;浏览器/服务器结构,应具有良好的兼容性;基于Internet/Intranet技术的网络结构,需支持局域网(LAN)、广域网(WAN),可远程会诊;采用TB级甚至PB级存储子系统,提高响应能力;提供容错、纠错能力及更好的数据安全性和灾难恢复能力,有高性能数据压缩技术;系统界面友好,有强大的中文支持能力,易学易用;有语音、图像和数据的传输等多种技术的无缝整合;有完整的系统解决方案,系统利于维护和技术支持。 上世纪,伴随着科技的发展,医疗水平不断提高,各种新的医疗影像设备不断涌现。50年代超声技术运用于医学领域;70年代CT和80年代MRI先后应用于临床。此后基本上每隔两三年就有新种类的医疗影像设备被发明。越来越多的医疗影像设备一方面提高了诊断的准确程度,另一方面带来了新的问题。那就是如何管理这些医疗影像设备产生的数据,为了在一定范围内获得医疗影像设备产生的数据,保证不同厂家的影像设备的数据能够互连。1982年美国放射学会(ACR)和电器制造协会(NEMA)联合组织了一个研究组(ACR-NEMA数字成像及通信标准委员会),研究如何制定一套统一的通讯标准来保证不同厂家的影像设备能够信息互连。经协商一致后,制定出了一套数字化医学影像的格式标准,即ACR-NEMA 1.0标准,随后在1988年完成了ACR-NEMA 2.0,1993年发布3.0版本正式命名为DICOM3.0(Digital Imaging and Communications in Medicine:医疗数字成像和通信)。但是由于各种原因,此标准直到1997年才慢慢被各医疗影像设备厂商接受。此后标准每年都有大变动,涉及到医学影像的每一个角落,特别是最近刚加入标准的SR(结构化报告)涉及了其他标准不敢涉及的领域。同时,标准还在安全性(隐私和授权)方面下了很大的功夫,添加了TSL/SSL,数字签名,数字授权,数据加密支持。为了支持不同领域的数据交换,还增加了XML支持。总之,DICOM标准日新月异不断向前发展。

目前,DICOM3.0已为国际医疗影像设备厂商普遍遵循,各大厂商所生产的影像设备均提供DICOM3.0标准通讯协议。

在系统的输出和输入上必须支持DICOM3.0标准,已成为PACS的国际规范。只有在DICOM3.0标准下建立的PACS才能为用户提供最好的系统连接和扩展功能。

(一) DICOM3.0

DICOM 标准的全称是“医学数字成像与通讯”(digital imaging and communication in medicine)标准,是按照NEMA的程序制订和发展的。它实际上是ACR-NEMA的第三个版 本。之所以不叫 ACR-NEMA3.0 而改称 DICOM3.0 是因为:①该标准并不单单是由ACR-NEM的联合委员会制订的,世界上其它一些标准化组织也共同参与了它的制订与发展。这些标准化组织包括欧洲标准化委员会251技术委员会(即 CENTC251),该委员会早已以DICOM为基础,制订出一项与DICOM完全兼容的标准--MEDICOM;还有日本的JIRA(japanese industry radiology Apparatus)和医学信息系统发展中心(medical informationsy stem development center)。这两个组织对DICOM的主要贡献在于提出了利用可移动的媒质(光 盘等)来存贮、交换医学图像的标准。在制订标准过程中,也参考了其它的一些组织,包括IEEE、HL7和ANSI等有关标准。②标准不仅支持医疗放射图像,它是可扩展的,面向所有医学图像,只要简单地增加相应的服务对象类(SOP)即可。扩展到心电图(cardiology、内窥镜(endoscopy)、牙医(dentistry)、病理学(pathology)和其它等类型图像的工作目前正在进行之中。与其前面的1.0和2.0版本一样,DICOM在制订工作一开始就考虑到一些相关标准化组织的研究成果,这不仅仅是为了避免重复性的工作,更重要的是为DICOM提供了重要的背景和技术。由于是面向网络环境的通讯标准,故对 DICOM 影响最大的是国际标准化组织的开放系统互联参考模型(ISO-OSI)。

(二) HL7

HL7 是在医疗环境中(尤其是在院病人治疗)交换电子数据的标准。1987年5月,在Pennsylvania 大学医院,成立了一个由医疗单位(和用户)、厂家和医疗顾问(consultants)组成的委员会,这个委员会主要负责HL7的工作,目的就是简化不同厂商(尤其包括竞争的厂商)在医疗领域中的计算应用的接口实现。其主要应用领域就是HIS/RIS。

HL7目前主要是规范在HIS/RIS系统及其设备之间通讯如下信息:病人入院/挂号、出院或转院数据(统称ADT-admissions/registration、discharge、transfer)和查询、病人安排、预订、财务、临床观察、医疗记录、病人的治疗、主文件更新信息等。

功能规范

随着信息技术的发展及医院运行机制的转变,医院信息系统已成为现代化医院必不可少的重要基础设施与支撑环境。卫生部为了积极推进信息网络基础设施的发展,加快医院信息化建设和管理,制定了《医院信息系统基本功能规范》。其中,对医学影像信息系统功能设置了以下规范。

(一) 影像处理

1.数据接收功能:接收、获取影像设备的DICOM3.0和非DICOM3.0格式的影像数据,支持非DICOM影像设备的影像转化为DICOM3.0标准的数据。

2.图像处理功能:自定义显示图像的相关信息,如姓名、年龄、设备型号等参数。提供缩放、移动、镜像、反相、旋转、滤波、锐化、伪彩、播放、窗宽窗位调节等功能。

3.测量功能:提供ROI值、长度、角度、面积等数据的测量;以及标注、注释功能。

4.保存功能:支持JPG、BMP等多种格式存储,以及转化成DIDICOM3.0格式功能。

5.管理功能:支持设备间影像的传递,提供同时调阅病人不同时期、不同影像设备的影像及报告功能。支持DICOM3.0的打印输出,支持海量数据存储、迁移管理。

6.远程医疗功能:支持影像数据的远程发送和接收。

7.系统参数设置功能:支持用户自定义窗宽窗位值、放大镜的放大比例等参数。

(二) 报告管理

1.预约登记功能。

2.分诊功能:病人的基本信息、检查设备、检查部位、检查方法、划价收费。

3.诊断报告功能:生成检查报告,支持二级医生审核。支持典型病例管理。

4.模板功能;用户可以方便灵活的定义模板,提高报告生成速度。

5.查询功能:支持姓名、影像号等多种形式的组合查询。

6.统计功能:可以统计用户工作量、门诊量、胶片量以及费用信息。

(三) 运行要求

1.共享医院信息系统中患者信息。

2.网络运行:数据和信息准确可靠,速度快。

3.安全管理:设置访问权限,保证数据的安全性。

4.建立可靠的存储体系及备份方案,实现病人信息的长期保存。

5.报告系统支持国内外通用医学术语集。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/307182.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-27
下一篇2023-04-27

发表评论

登录后才能评论

评论列表(0条)

    保存