结构方程模型,CFA,路径分析,潜变量调节模型这几个是什么关系

结构方程模型,CFA,路径分析,潜变量调节模型这几个是什么关系,第1张

SEM就是输入相关矩阵或协方差矩阵,结合1个或多个构想的可能模型,统计软件(如Mplus、Lisrel)帮你算出拟合指数,输出各路径参数、拟合指数等,可以用于修正和比较模型。想了解SEM推荐侯杰泰老师的《结构方程模型及其应用》(现在不再版,只有影印版) 。CFA也是SEM(结构方程模型)的一种,但不是完整SEM;路径分析也是SEM的一个特例,但前者是对显变量,后者对潜变量。实际上SEM是很多统计方法(如t检验、方差分析、回归分析等)的特例,而SEM具有更准确的误差估计和信度指标。因为CFA可以检验量表结构,所以往往先做CFA,如果拟合不好,说明量表信效度不高,就难以做之后的分析。中介和调节检验有不同的方法,可以基于SEM对潜变量做分析,也可以化潜为显做层次回归(用SPSS)。要了解中介和调节,推荐温忠麟老师的文章,比如05年发在《心理学报》上的《调节效应与中介效应的比较和应用》,温忠麟老师的书《调节效应与中介效应分析》。看到你的标签里有“家庭关系”,你是做发展教育方向的吧!你所说的这些:SEM、中介调节都是统计前沿,发展教育也用得很多,但建议先多阅读文章和书,了解了原理再使用。

在之前的回答中我们已经了解了这种分析是用来对测量模型进行验证的。这个地方有点绕,因为在国内的教材也好,老师讲课也好,使用CFA虽然是针对测量模型进行的分析,但是其具体指向的是结构效度这一概念。在SEM里,我们是对测量模型(常见为CFA)和结构模型(常见为路径分析、中介效应分析等)二者进行拟合的判断。

这里又是测量又是结构的,很容易让人产生混乱,以至于在分析选择及处理上总是纠缠不清,同样另一位答主也在这点上有些搅。这里我们再明确一下CFA的用法:验证性因素分析是通过SEM的方法(仅仅是通过方法,其实和SEM本质上还是有区别的)对测量模型的拟合进行验证,以确认测量的结构效度的分析方法。

题目中的两种做法区别到底在哪?我们可以发现其实题目中的方法,即潜变量共变的方法是标准的CFA的做法。我们之前提到,CFA只对测量模型进行验证,那么在测量模型中,维度/因素间的关系我们是假设其相互对立的,或者不假设关系。基于此,通过前人研究做的假设放到一个CFA中进行关系的拟合判断事实上是并不符合CFA仅针对测量模型进行分析的条件的。

除了在方法1的基础上进行了维度潜变量拟合的验证外,又验证了一个假设的结构模型。这是典型的潜变量SEM的做法,或者说是进行结构模型分析。这是SEM的标准做法,但并不是CFA的标准做法。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/309104.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-28
下一篇2023-04-28

发表评论

登录后才能评论

评论列表(0条)

    保存