C 语言多线程怎么读文件高效

C 语言多线程怎么读文件高效,第1张

C语言---多个线程读取文件,其代码如下:

#include

#include

#include

#include

#include

#include

#define THREAD_NUM 25

typedef struct

{undefined

FILE *_fp

int _nThreadId//第几个线程

sem_t *_semLock

}IDD_THREAD_PARAM

void *ThreadFunc(void *args)

{undefined

char sLine[100+1]

FILE *fpRead = ((IDD_THREAD_PARAM *)args)->_fp

sem_t *semLock = ((IDD_THREAD_PARAM *)args)->_semLock

int nId = ((IDD_THREAD_PARAM *)args)->_nThreadId

sem_wait(semLock)

while(!feof(fpRead))

{undefined

memset(sLine,0,sizeof(sLine))

fgets(sLine,100,fpRead)

fprintf(stderr,"Thread ID-%d:%s",nId,sLine)

}

sem_post(semLock)

}

int main()

{undefined

pthread_t *pThreads

sem_t semLock

pThreads = (pthread_t *)malloc(THREAD_NUM*sizeof(pthread_t))

sem_init(&semLock,0,1)

FILE *fp = fopen("test.txt","r")

//开始线程循环

IDD_THREAD_PARAM param

for(int i=0i

{undefined

memset(param,0,sizeof(IDD_THREAD_PARAM))

param._fp = fp

param._nThreadId = i

param._semLock = &semLock

pthread_create((pThreads+i),NULL,ThreadFunc,param)

}

for(int i=0i

pthread_join(*(pThreads+i),NULL)

free(pThreads)

pThreads = NULL

fclose(fp)

fp = NULL

return 0

}

这么高的悬赏,实例放后面。信号量(sem),如同进程一样,线程也可以通过信号量来实现通信,虽然是轻量级的。信号量函数的名字都以"sem_"打头。线程使用的基本信号量函数有四个。

     信号量初始化。

     int sem_init (sem_t *sem , int pshared, unsigned int value)

    这是对由sem指定的信号量进行初始化,设置好它的共享选项(linux 只支持为0,即表示它是当前进程的局部信号量),然后给它一个初始值VALUE。

    等待信号量。给信号量减1,然后等待直到信号量的值大于0。

    int sem_wait(sem_t *sem)

    释放信号量。信号量值加1。并通知其他等待线程。

    int sem_post(sem_t *sem)

    销毁信号量。我们用完信号量后都它进行清理。归还占有的一切资源。

    int sem_destroy(sem_t *sem) #include <stdlib.h>  

    #include <stdio.h>  

    #include <unistd.h>  

    #include <pthread.h>  

    #include <semaphore.h>  

    #include <errno.h>  

    #define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__)return}  

    typedef struct _PrivInfo  

    {  

        sem_t s1  

        sem_t s2  

        time_t end_time  

    }PrivInfo  

    static void info_init (PrivInfo* thiz)  

    static void info_destroy (PrivInfo* thiz)  

    static void* pthread_func_1 (PrivInfo* thiz)  

    static void* pthread_func_2 (PrivInfo* thiz)  

    int main (int argc, char** argv)  

    {  

        pthread_t pt_1 = 0  

        pthread_t pt_2 = 0  

        int ret = 0  

        PrivInfo* thiz = NULL  

        thiz = (PrivInfo* )malloc (sizeof (PrivInfo))  

        if (thiz == NULL)  

        {  

            printf ("[%s]: Failed to malloc priv./n")  

            return -1  

        }  

        info_init (thiz)  

        ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz)  

        if (ret != 0)  

        {  

            perror ("pthread_1_create:")  

        }  

        ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz)  

        if (ret != 0)  

        {  

            perror ("pthread_2_create:")  

        }  

        pthread_join (pt_1, NULL)  

        pthread_join (pt_2, NULL)  

        info_destroy (thiz)  

        return 0  

    }  

    static void info_init (PrivInfo* thiz)  

    {  

        return_if_fail (thiz != NULL)  

        thiz->end_time = time(NULL) + 10  

        sem_init (&thiz->s1, 0, 1)  

        sem_init (&thiz->s2, 0, 0)  

        return  

    }  

    static void info_destroy (PrivInfo* thiz)  

    {  

        return_if_fail (thiz != NULL)  

        sem_destroy (&thiz->s1)  

        sem_destroy (&thiz->s2)  

        free (thiz)  

        thiz = NULL  

        return  

    }  

    static void* pthread_func_1 (PrivInfo* thiz)  

    {  

        return_if_fail(thiz != NULL)  

        while (time(NULL) < thiz->end_time)  

        {  

            sem_wait (&thiz->s2)  

            printf ("pthread1: pthread1 get the lock./n")  

            sem_post (&thiz->s1)  

            printf ("pthread1: pthread1 unlock/n")  

            sleep (1)  

        }  

        return  

    }  

    static void* pthread_func_2 (PrivInfo* thiz)  

    {  

        return_if_fail (thiz != NULL)  

        while (time (NULL) < thiz->end_time)  

        {  

            sem_wait (&thiz->s1)  

            printf ("pthread2: pthread2 get the unlock./n")  

            sem_post (&thiz->s2)  

            printf ("pthread2: pthread2 unlock./n")  

            sleep (1)  

        }  

        return  

    }

线程之间的同步和互斥解决的问题是线程对共同资源进行访问。Posix有两种方式:

信号量和互斥锁;信号量适用同时可用的资源为多个的情况;互斥锁适用于线程可用的资源只有一个的情况

1、互斥锁:互斥锁是用加锁的方式来控制对公共资源的原子操作(一旦开始进行就不会被打断的操作)

互斥锁只有上锁和解锁两种状态。互斥锁可以看作是特殊意义的全局变量,因为在同一时刻只有一个线程能够对互斥锁进行操作;只有上锁的进程才可以对公共资源进行访问,其他进程只能等到该进程解锁才可以对公共资源进行操作。

互斥锁操作函数:

pthread_mutex_init()//初始化

pthread_mutex_lock()//上锁参数:pthread_mutex_t *mutex

pthread_mutex_trylock()//判断上锁 参数:pthread_mutex_t *mutex

pthread_mutex_unlock()//解锁参数:pthread_mutex_t *mutex

pthread_mutex_release()//消除互斥锁 参数:pthread_mutex_t *mutex

互斥锁分为快速互斥锁、递归互斥锁、检错互斥锁;在 init 的时候确定

int pthread_mutex_t(pthread_mutex_t *mutex, const pthread_mutex_t mutexattr)

第一个参数:进行操作的锁

mutexattr:锁的类型,默认快速互斥锁(阻塞)123456789

2、信号量:信号量本质上是一个计数器,在操作系统做用于PV原子操作;

P操作使计数器-1;V操作使计数器+1.

在互斥操作中可以是使用一个信号量;在同步操作中需要使用多个信号量,并设置不同的初始值安排它们顺序执行

sem_init() // 初始化操作

sem_wait() // P操作,计数器减一;阻塞参数:sem_t *sem

sem_trywait() // P操作,计数器减一;非阻塞 参数:sem_t *sem

sem_post()// V操作,计数器加一 参数:sem_t *sem

sem_destroy() // 销毁信号量参数:sem_t *sem

sem_init(sem_t *sem, int pshared, int value)

pshared用于指定多少个进程共享;value初始值


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/309274.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-28
下一篇2023-04-28

发表评论

登录后才能评论

评论列表(0条)

    保存