如果对于微观结构不必要了解,用其他方法更简单使用。
聚焦离子束扫描电镜双束系统(FIB-SEM)是在SEM的基础上增加了聚焦离子束镜筒的双束系统,同时具备微纳加工和成像的功能,广泛应用于科学研究和半导体芯片研发等多个领域。本文记录一下FIB-SEM在材料研究中的应用。
以目前实验室配有的FIB-SEM的型号是蔡司的Crossbeam 540为例进行如下分析,离子束最高成像分辨率为3nm,电子束最高分辨率为0.9nm。该系统的主要部件及功能如下:
1.离子束: 溅射(切割、抛光、刻蚀);刻蚀最小线宽10nm,切片最薄3nm。
2.电子束 : 成像和实时观察
3.GIS(气体注入系统): 沉积和辅助刻蚀;五种气体:Pt、W、SiO2、Au、XeF2(增强刻蚀SiO2)
4.纳米机械手: 转移样品
5.EDS: 成分定量和分布
6.EBSD : 微区晶向及晶粒分布
7.Loadlock(样品预抽室): 快速进样,进样时间只需~1min
由上述FIB-SEM的一个部件或多个部件联合使用,可以实现在材料研究中的多种应用,具体应用实例如下:
图2a和b分别是梳子形状的CdS微米线的光学显微镜和扫描电镜照片,从光学显微镜照片可以看出在CdS微米线节点处内部含有其他物质,但无法确定是什么材料和内部形貌。利用FIB-SEM在节点处定点切割截面,然后对截面成像和做EDS mapping,如图2c、d、e和f所示,可以很直观的得到在CdS微米线的节点处内部含有Sn球。
FIB-SEM制备TEM样品的常规步骤如图3所示,主要有以下几步:
1)在样品感兴趣位置沉积pt保护层
2)在感兴趣区域的两侧挖大坑,得到只有约1微米厚的薄片
3)对薄片进行U-cut,将薄片底部和一侧完全切断
4)缓慢移下纳米机械手,轻轻接触薄片悬空的一端后,沉积pt将薄片和纳米机械手焊接牢固,然后切断薄片另一侧,缓慢升起纳米机械手即可提出薄片
5)移动样品台和纳米机械手,使薄片与铜网(放置TEM样品用)轻轻接触,然后沉积pt将薄片和铜网焊接牢固,将薄片和纳米机械手连接的一端切断,移开纳米机械手,转移完成
6)最后一步为减薄和清洗,先用大加速电压离子束将薄片减薄至150nm左右,再利用低电压离子束将其减薄至最终厚度(普通TEM样品<100nm,高分辨TEM样品50nm左右,球差TEM样品<50nm)
一种如图4a所示的MoS2场效应管,需要确定实际器件中MoS2的层数及栅极(Ag纳米线)和MoS2之间的距离。利用FIB-SEM可以准确的在MoS2场效应管的沟道位置,垂直于Ag纳米线方向,提出一个薄片,并对其进行减薄,制备成截面透射样。在TEM下即可得到MoS2的层数为14层(图4c), Ag纳米线和MoS2之间的距离为30nm(图4b)。
图5是一种锰酸锂材料的STEM像,该样品是由FIB-SEM制备,图中可以看到清晰的原子像。这表明FIB-SEM制备的该球差透射样非常薄并且有很少的损伤层。
FIB-SEM还可以进行微纳图形的加工。
图6a 是FIB-SEM在Au/SiO2上制备的光栅,光栅周期为150nm,光栅开口为75nm。
图6b 是利用FIB-SEM在Mo/石英上做的切仑科夫辐射源针尖,针尖曲率半径为17nm。
图6c 是在Au膜上加工的三维对称结构蜘蛛网。
图6d 是FIB-SEM在硅上刻蚀的贺新年图案,图中最小细节尺寸仅有25nm。
FIB-SEM可以对材料进行切片式的形貌和成分三维重构,揭示材料的内部三维结构。大概过程如图7a所示, FIB切掉一定厚度的样品,SEM拍一张照片,重复此过程,连续拍上百张照片,然后将上百张切片照片重构出三维形貌。图7b是一种多孔材料内部3×5×2um范围的三维重构结果,其实验数据是利用FIB-SEM采集,三维重构是利用Avizo软件得到,其分辩率可达纳米级,展示了内部孔隙的三维空间分布,并可以计算出孔隙的半径大小、体积及曲率等参数。
利用FIB-SEM配有的纳米机械手及配合使用离子束沉积Pt,可以实现微米材料的转移,即把某种材料从一个位置(衬底)转移到特定位置(衬底),并固定牢固。图8是把四针氧化锌微米线从硅片转移到两电极的沟道之间,从而制备成两个微米线间距只有1um的特殊器件。
最后,FIB-SEM还有很多其他的应用,例如三维原子探针样品制备,芯片线路修改等。总之FIB-SEM是材料研究中一个非常重要的手段。
不积珪步,无以至千里;不积细流,无以成江海。做好每一份工作,都需要坚持不懈的学习。
第一作者:Chin-Te Hung、Linlin Duan
通讯作者:赵东元院士、李伟教授
通讯单位:复旦大学
DOI: 10.1021/jacs.2c01444
全文速览
合成具有均匀空间梯度和结构强化效应的多级多孔结构仍然是一个巨大的挑战。在本文中,作者开发出一种胶束动态组装策略,成功合成出一种具有梯度多孔结构的沸石@介孔二氧化硅核壳纳米球(ZeoA@MesoS)。研究发现,复合胶束的尺寸可以随着溶胀剂的增加而动态变化,该溶胀剂可原位作为构建模块用于梯度介孔结构的模块化组装。所制备出的ZeoA@MesoS纳米球在溶剂中高度分散,内核具有均匀的微孔,并且介孔壳呈现梯度管状。将其用作纳米反应器时,该多级梯度多孔结构能够实现从溶液到内部活性位点的毛细管导向快速传质。因此,ZeoA@MesoS催化剂在长链棕榈酸的酯化反应中表现出高达75%的产率,并且即便在水干扰下也具有优异的稳定性,因为水干扰可以被ZeoA核捕获,从而推动化学平衡。此外,锚定Pd的ZeoA@MesoS催化剂在大分子N-甲基吲哚的C–H芳基化反应中也表现出优异的催化转化性能(98%)。与不含沸石核的Pd-枝晶状介孔二氧化硅相比,耐水特性可以使催化产率显著提高26%。
背景介绍
近年来,一些基于分子组装概念的策略已被证明可以将多级孔隙生长引导为各种形状和多孔结构,其主要方法是采用宏观/介观尺度组装单元作为孔隙导向剂,从而形成大孔和介孔的多级组装。然而,利用该方法合成出的大多数产品均为微米级的块状材料,没有均匀的形状和自然的梯度结构。另一种获得多级多孔结构的策略是构筑多孔核壳结构,通过控制核与壳中孔隙的大小来实现。迄今为止,科研人员在合成具有均匀形貌和孔径的多孔核壳结构材料方面付出了巨大努力。然而,这种均匀的多孔结构在催化反应等实际应用中的性能远不能令人满意,因其不利于催化过程中的动态变化和复杂的耦合机制。因此,在精细的控制水平上模拟自然的多级多孔结构仍然具有挑战性。
在本文中,作者开发出一种胶束动态组装策略,成功合成出一种具有空间梯度多孔结构的沸石@介孔二氧化硅核-壳结构(ZeoA@MesoS)。所制备出的ZeoA@MesoS材料表现出高度单分散性,具有球形形貌和中心-径向梯度介孔通道(2-10 nm),在核中具有均匀的微孔(0.5 nm)。通过动态改变作为自组装基本单元的复合胶束模板,可以精确的控制介孔尺寸。更重要的是,这种梯度多级多孔结构可以很好地模拟自然界中的多级多孔系统,自发地表现出从溶液到内部活性位点的毛细管导向快速传质用于化学反应。作为概念性验证,长链羧酸与醇的酯化反应被选为评估ZeoA@MesoS纳米反应器优异性能的模型反应。与纯MesoS相比,ZeoA@MesoS在含水量为6%的溶液中仍表现出显著提高的产率(增加29%),且初始反应速率提高了3倍。研究表明,ZeoA核和梯度多孔壳结构可以提供有效的捕水能力和从壳层到内核的快速传输。此外,通过在ZeoA@MesoS的介孔壳层上负载Pd,可以将其应用扩展至各种催化反应中。在大分子N-甲基吲哚的直接C–H芳基化反应中,负载Pd的ZeoA@MesoS催化剂表现出高达98%的N-甲基-2-苯基吲哚产率,证明该梯度多级多孔结构的优势。
图文解析
图1 . 通过胶束动态组装策略合成出LTA沸石@介孔二氧化硅核壳结构纳米球(ZeoA@MesoS)的示意图。
图2 . 水热法制备出ZeoA纳米晶的(a,b)TEM图,(c)HRTEM图;通过胶束动态组装策略制备出核壳结构ZeoA@MesoS的(d)SEM图,(e,f) TEM图,(g,h) HRTEM图,其中箭头表示ZeoA纳米晶核的微孔与二氧化硅壳层的介孔之间的连接。
图3 . ZeoA纳米晶和ZeoA@MesoS的(a)X射线粉末衍射(XRD)图谱;(b)氮吸附-脱附等温线和孔径分布曲线;(c)氨程序升温脱附(NH3-TPD)曲线。
图4 . (a)磺酸功能化ZeoA@MesoS (SA-ZeoA@MesoS)催化长链羧酸(棕榈树, PA)酯化反应的示意图;(b)新制备出SA-ZeoA@MesoS催化剂的TEM图;(c)SA-ZeoA@MesoS与磺酸功能化MesoS (SA-MesoS)作为催化剂时,PA酯化反应与反应周期的关系;(d)初始反应速率对循环次数的依赖性;(e)SA-ZeoA@MesoS和SA-MesoS催化剂在PA酯化反应中的耐水性。
图5. (a)Pd-n-ZeoA@MesoS催化剂用于N-甲基吲哚C–H芳基化反应的示意图;(b)Pd-n-ZeoA@MesoS催化剂的TEM图;(c)Pd-n-ZeoA@MesoS催化剂上负载Pd的粒径分布;(d)Pd-n-ZeoA@MesoS和Pd-ZeoA@MesoS作为催化剂时,N-甲基吲哚C–H芳基化反应的产率与反应周期的关系;(e)以ZeoA, MesoS, n-ZeoA@MesoS, Pd-n-ZeoA@MesoS, Pd-ZeoA@MesoS, Pd-n-MesoS, Pd-n-MesoS/ZeoA, 商业化Pd/C, PdCl2作为催化剂时的产率比较;(f)以回收的Pd-n-ZeoA@MesoS作为催化剂时,循环运行中的产率(蓝线)和初始反应速率(红线)。
总结与展望
综上所述,本文通过胶束动态组装策略成功合成出一种具有独特梯度多级多孔结构的沸石@介孔二氧化硅核壳纳米球(ZeoA@MesoS)。这种由梯度介孔二氧化硅壳层和高度结晶LTA型沸石纳米晶(ZeoA)核(直径100 nm)组成的均匀ZeoA@MesoS纳米球,表现出优异的单分散性和高达921 m2/g的比表面积。更重要的是,核心微孔与壳层径向与梯度介孔之间相互连接的多孔结构有利于副产物水在毛细管吸引下的快速移动,并进一步被ZeoA核快速吸附,从而增强催化反应。因此,磺酸功能化ZeoA@MesoS的耐水性可以确保长链羧酸酯化反应的优异催化效率,不仅与磺酸功能化MesoS相比表现出更高的产率,而且即使在五次再生后也具有良好的稳定性。而且,所设计出的Pd固定于ZeoA@MesoS作为耐水催化纳米反应器时,表现出比商业Pd/C催化剂更卓越的N-甲基吲哚C–H芳基化反应性能,具有优异的产率(98%)、杰出的可重复使用性和较强的耐水性。得益于多功能的集成,所设计出的均匀梯度多级沸石@介孔核壳纳米球可以进一步作为任务导向型纳米反应器,包括通过调节微/介孔通道的大小和多位点进行分子尺寸筛选,以及通过适当选择核沸石的类型和壳结构进行协同催化反应。因此,该梯度多级多孔结构设计的应用不仅限于传统的化学催化剂,还可以用于包括储能和环境修复等多个领域。
文献来源
Chin-Te Hung, Linlin Duan, Tiancong Zhao, Liangliang Liu, Yuan Xia,Yupu Liu, Pengpeng Qiu, Ruicong Wang, Zaiwang Zhao, Wei Li, Dongyuan Zhao. Gradient Hierarchically Porous Structure for Rapid Capillary-Assisted Catalysis. J.Am. Chem. Soc. 2022. DOI: 10.1021/jacs.2c01444.
文献链接:https://doi.org/10.1021/jacs.2c01444
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)