为什么频率越高带宽越大

为什么频率越高带宽越大,第1张

射频工作频率越高,可以使用的相对带宽越大。

相对带宽就是载波频率的百分之5左右,这是无线通信使用的经验公式。基带带宽除以载波频率也叫调制率。

或者这样理解载频频率,决定了单位时刻内传输的波形个数,比如1HZ的载频每秒传输一个波形,10hz 每秒传输10个周期波形,所以射频的频率高,一个时间段内传输的波形周期越多。

基带信息靠加载到载波波形传输,本来 1比特用1个波形周期传输,现在有十个波形周期,那么就可以传输10个比特,比特速率变大,那么带宽也变大。

扩展资料:

数字信号系统中,带宽用来标识通讯线路所能传送数据的能力,即在单位时间内通过网络中某一点的最高数据率,常用的单位为bps(又称为比特率,每秒多少比特)。在日常生活中中描述带宽时常常把bps省略掉,例如:带宽为4M,完整的称谓应为4Mbps。

如果开通10M带宽,可以达到最高1.25M的速度,一般来说,一台计算机观看电影,玩游戏等,4M带宽足够。但是如果你需要经常下载大文件,建议还是使用更高带宽。

参考资料来源:百度百科-信号带宽

百度百科-带宽

UWB源于20世纪60年代兴起的脉冲通信技术。不同于传统的通信技术,UWB是通过发送和接收具有纳秒或微秒级以下的极窄脉冲来实现无线传输的。由于脉冲时间宽度极短,因此可以实现频谱上的超宽带:使用的带宽在500MHz以上。

UWB主要有以下优点:

(1)抗多径能力强,定位精度高:带宽决定了信号在多径环境下的距离分辨能力(成正比关系)。UWB的带宽很宽,多径分辨能力强,能够分辨并剔除大部分多径干扰信号的影响,得到精度很高的定位结果。UWB可以在距离分辨能力上高于其他传统系统,复杂环境下其精度甚至可以达到Wi-Fi、蓝牙等传统系统的百倍以上。

(2)时间戳精度高:超宽带脉冲信号的带宽在纳秒级,有定时来计算位置时,引入的误差通常小于几厘米。

(3)电磁兼容性强:UWB 的发射功率低,信号带宽宽,能够很好地隐蔽在其它类型信号和环境噪声之中,传统的接收机无法识别和接收,必须采用与发射端一致的扩频码脉冲序列才能进行解调,所以不会对其他通信业务造成干扰,同时也能够避免其他通信设备对其造成干扰。

(4)能效较高:UWB具有500MHz以上的射频带宽,能够提供极大的扩频增益,使得UWB通信系统能效较高。这意味着对于电池供电设备,系统的工作时间可以大大延长,或是同样发射功率限制下,覆盖范围比传统技术大得多

“基带”和“射频”是通信行业里的两个常见概念,每个人可能对这两个概念的理解都不一样,造成这样的原因是对它们理解的不够。  

基带和射频是做什么用的呢?以手机通话为例,来观察信号从手机到基站的整个过程基带和射频所起到的作用。

 

一、通过麦克风的拾音将声波(机械波)转换为电信号。当手机通话接通后,人发出的声音会通过手机麦克风拾音,变成电信号(这个就是原始的模拟信号)。       

二、通过基带调制将声音原始模拟信号转换为数字信号基带,基本频带(Baseband),是指一段频率范围非常窄的信号,也就是频率范围在零频附近(从直流到几百KHz)的这段带宽。处于这个频带的信号,我们称为基带信号,它是未经过载波调制的最“基础”信号。现实生活中我们经常提到的基带,更多是指手机的基带芯片、电路,或者基站的基带处理单元(BBU)。       

这时,我们会很难理解什么是载波调制,通过模拟信号的载波调制,我更加容易理解数字载波调制的过程。调制是改变载波信号一个或多个特性的过程。所谓改变特性,无非就是改变载波信号的振幅或者相位。调制信号通常包含要传输的信息。      

模拟调制的目的是将模拟基带(或低通)信号,在不同频率的模拟带通信道上传输。数字调制的目的是在模拟通信信道上传输数字比特流。这些原始模拟信号会通过基带芯片中的数/模(A/D)转换电路,完成信号采样、量化、编码,变成数字信号。       

上图中的这个过程称之为信源编码,就是把声音、画面变成“0”和“1”,目的是使信源减少冗余,更加有效、经济地传输,更加有效、经济地传输,最常见的应用形式就是压缩,以便减少“体积”。       

除了信源编码之外,基带还要做信道编码。信道编码,和信源编码完全不同。信源编码是减少“体积”。信道编码恰好相反,是增加“体积”。信道编码通过增加冗余信息(如校验码等),对抗信道中的干扰和衰减,改善链路性能。信道编码就像在货物边上填塞保护泡沫。这样货物运输途中受损概率就会降低。        

除了编码之外,基带还要对信号进行加密。最基本的调制方法,就是调频(FM)、调幅(AM)、调相(PM)。如下图,就是用不同的波形,代表0和1。       

现代数字通信技术非常发达,在上述基础上,研究出了多种调制方式。如:ASK(幅移键控)、FSK(频移键控)、PSK(相移键控)等,还有现在常见到的QAM(正交幅度调制)。我们通过星座图来直观的表达各种调制方式,如下图:       

星座图中的点,可以指示调制信号幅度和相位的可能状态。       

如:16QAM,可以用1个符号表示4个bit的数据。    

5G普遍采用的256QAM,可以用1个符号表示8bit的数据。      

调制之后的信号,单个符号能够承载的信息量大大提升。

三、到此,基带干完了它该干的活,轮到射频了射频(Radio

Frequency,简称RF),是指频率范围在300KHz~300GHz的高频电磁波。频率低于100kHz的电磁波会被地表吸收,不能形成有效的传输。频率高于100kHz的电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力。

具有远距离传输能力的高频电磁波,我们才称为射频(信号)。电磁波的产生,是交变电流通过导体,会形成电磁场,产生电磁波。    

现实生活中,我们通常会把产生射频信号的射频电路、射频芯片、射频模组、射频元器件等,笼统简称为射频。如:有人说,“XX手机的基带很烂”,“XX公司做不出基带”,“XX设备的射频性能很好”,“XX的射频很贵”……基带送过来的信号频率很低。而射频要做的事情,就是继续对信号进行调制,从低频,调制到指定的高频频段。如:900MHz的GSM频段,1.9GHz的4G

LTE频段,3.5GHz的5G频段。      

为什么射频要做这样的调制?无线频谱资源紧张,法律法规有明确指示频段的相应用途,这样才不会互相造成干扰。低频频段普遍被用作其他用途,高频频段资源相对来说比较丰富,更容易实现大带宽。基带信号不利于远距离传输;

低频频段不利于工程实现;当天线的长度是无线电信号波长的1/4时,天线的发射和接收转换效率最高。电磁波的波长和频率成反比(光速=波长×频率)如果使用低频信号,手机和基站天线的尺寸就会比较大,增加工程实现的难度。尤其是手机端,对大天线尺寸是不能容忍的,会占用宝贵的空间。       

信号经过射频调制之后,功率较小,还需要经过功率放大器的放大,使其获得足够的射频功率,然后才会送到天线。信号到达天线之后,经过滤波器的滤波(消除干扰杂波),最后通过天线振子以电磁波的形式发射出去。

四、无线信号的接收和转换基站天线收到无线信号之后,会对信号进行滤波,放大,解调,解码,然后通过承载网送到核心网,再由对方手机基站和手机完成后面的数据传递和处理,这个过程是上面接收到的逆过程。       

以上,就是手机端到手机端信号大致的变化过程,实际过程还是会复杂很多。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/316304.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-30
下一篇2023-04-30

发表评论

登录后才能评论

评论列表(0条)

    保存