SEM结构方程模型

SEM结构方程模型,第1张

R包lavaan可以做

https://www.codetd.com/article/916129

软件AMOS可以做

https://mp.weixin.qq.com/s?__biz=MjM5MTI5MDgxOA==&mid=2650098738&idx=1&sn=319fcc4198fbcd36fc30fd1329e27bf0&chksm=beb6289f89c1a189115d96bb0f9bc3114a752f9bf1fed4c9979b2e965322d8e38c60844316de&scene=21#wechat_redirect

https://mp.weixin.qq.com/s?__biz=MjM5MTI5MDgxOA==&mid=2650098759&idx=1&sn=0099b81e77a2f8b6324e88a5b49773ed&chksm=beb628ea89c1a1fcdb4c068466e6f099e0bd1af0909bbc538aca4247477978b4b52b3b9aa036&scene=21#wechat_redirect

https://www.jianshu.com/p/d698dc099dec

https://www.jianshu.com/p/e0938fb35c45

https://blog.csdn.net/yjj20007665/article/details/66967966

χ2 卡方拟合指数 检验选定的模型协方差矩阵与观察数据协方差矩阵相匹配的假设。原假设是模型协方差阵等于样本协方差阵。如果模型拟合的好,卡方值应该不显著。

RMR 是残差均方根。RMR 是样本方差和协方差减去对应估计的方差和协方差的平方和,再取平均值的平方根。RMR应该小于0.08,RMR越小,拟合越好。

RMSEA 是近似误差均方根 RMSEA应该小于0.06,越小越好。

GFI 是拟合优度指数,范围在0和1间,但理论上能产生没有意义的负数。按照约定,要接受模型,GFI 应该等于或大于0.90。

CFI 是比较拟合指数,其值位于0和1之间。CFI 接近1表示拟合非常好,其值大于0.90表示模型可接受,越接近1越好。

同时要求样本和指标之间有一个最低数量比例

sem 结构方程模型是社会科学研究中的一个非常好的方法。该方法在20世纪80年代就已经成熟,可惜国内了解的人并不多。“在社会科学以及经济、市场、管理等研究领域,有时需处理多个原因、多个结果的关系,或者会碰到不可直接观测的变量(即潜变量),这些都是传统的统计方法不能很好解决的问题。20世纪80年代以来,结构方程模型迅速发展,弥补了传统统计方法的不足,成为多元数据分析的重要工具。 结构方程模型分析:结构方程模型是一种建立、估计和检验因果关系模型的方法。模型中既包含有可观测的显在变量,也可能包含无法直接观测的潜在变量。结构方程模型可以替代多重回归、通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标间的相互关系。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/316739.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-30
下一篇2023-04-30

发表评论

登录后才能评论

评论列表(0条)

    保存