1、概念不同:
能带宽度:为价带和导带的宽度,即电子能量分裂的一个个密集能级组成的宽度。 禁带宽度:为导带和价带的间距。能带宽度就是通电的能力,禁带宽度就是组电的能力。
2、所含电子不同:
能带:是用量子力学的方法研究固体内部电子运动的理论。始于20世纪初期,在量子力学确立以后发展起来的一种近似理论。它曾经定性地阐明了晶体中电子运动的普遍特点,并进而说明了导体与绝缘体、半导体的区别所在,解释了晶体中电子的平均自由程问题。
禁带宽度:是指一个能带宽度,固体中电子的能量是不可以连续取值的,而是一些不连续的能带,要导电就要有自由电子存在,自由电子存在的能带称为导带(能导电),被束缚的电子要成为自由电子,就必须获得足够能量从而跃迁到导带,这个能量的最小值就是禁带宽度。
例如:锗的禁带宽度为0.66ev;硅的禁带宽度为1.12ev;砷化镓的禁带宽度为1.46ev。‘
扩展资料
半导体禁带宽度与温度和掺杂浓度等有关:半导体禁带宽度随温度能够发生变化,这是半导体器件及其电路的一个弱点(但在某些应用中这却是一个优点)。半导体的禁带宽度具有负的温度系数。例如,Si的禁带宽度外推到0K时是1.17eV,到室温时即下降到1.12eV。
如果由许多孤立原子结合而成为晶体的时候,一条原子能级就简单地对应于一个能带,那么当温度升高时,晶体体积膨胀,原子间距增大,能带宽度变窄,则禁带宽度将增大,于是禁带宽度的温度系数为正。
参考资料来源:
百度百科——禁带宽度
百度百科——能带
我来回答一下,本人某电微电子科学与工程专业,有表述不当之处,望批评指正。影响半导体禁带宽度的因素主要有两种:温度与掺杂浓度。(以si、Ge、GaAs半导体为主)
1、半导体禁带宽度具有负温度系数:
从原子到晶体,经过价键杂化(即:sp3杂化),一条原子能级一般对应多个能带。当温度升高时,晶体的原子间距增大,能带宽度虽然变窄,但禁带宽度却是减小的。(这里解释一下,虽然原子间距增大了,并且能带宽度变窄了,但是此时有多条能带,相对来说,禁带宽度是变小的);
2、掺杂浓度升高时,由于杂质能级的出现,可能导致禁带宽度变窄:
其实这一点从本质来解释是不太好理解的,我这里举个例子,再给出我个人的一些理解,希望可以帮助你理解这一点。例:在BJT中,发射区高掺杂会导致禁带宽度变窄。我个人理解是,有了杂质能级的加入,导电性增强,就像把禁带宽度一分为二,原先的阻碍减少了一部分,相当于禁带宽度变窄了。(纯属个人理解)
1、光电检测技术有何特点?光电检测系统的基本组成是怎样的?答:光电检测技术是将光学技术与现代技术相结合,以实现对各种量的测量,它具有如下特点:(1)高精度,光电测量是各种测量技术中精度最高的一种。(2)高速度,光电检测以光为媒介,而光是各种物质中传播速度最快的,因此用光学方法获取和传递信息的速度是最快的。(3)远距离、大量程,光是最便于远距离传递信息的介质,尤其适用于遥控和遥测。(4)非接触式测量,不影响到被测物体的原始状态进行测量。
光电检测系统通过接收被测物体的光辐射,经光电检测器件将接收到的光辐射转换为电信号,再通过放大、滤波等电信号调理电路提取有用信息,经数模转换后输入计算机处理,最后显示,输出所需要的检测物理量等参数。
2、什么是能带、允带、禁带、满带、价带和导带?绝缘体、半导体、导体的能带情况有何不同?
答:晶体中电子所能具有的能量范围,在物理学中往往形象化地用一条条水平横线表示电子的各个能力值,能量愈大,线的位置愈高,一定能量范围内的许多能级(彼此相隔很近)形成一条带,称为能带。 其中允许被电子占据的能带称为允带。允带之间的范围是不允许电子占据的,称为禁带。在晶体中电子的能量状态遵守能量最低原理和泡利不相容原理,晶体最外层电子壳层分裂所形成的能带称为价带。价带可能被电子填满也可能不被填满,其中被填满的能带称为满带。半导体的价带收到光电注入或热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后即成为导电的能带--导带。
对绝缘体和半导体,它的电子大多数都处于价带,不能自由移动,但是热,光等外界因素的作用下,可以少量价带中的电子越过禁带,跃迁到导带上去成为载流子。
绝缘体和半导体的区别主要是禁的宽度不同。半导体的禁带很窄,绝缘体的禁带宽一些,电子的跃迁困难的多,因此,绝缘体的载流子的浓度很小。导电性能很弱。实际绝缘体里,导带里电子不是没有,并且总有一些电子会从价带跃迁到导带,但数量极少,所以,在一般情况下,可以忽略在外场作用下他们移动所形成的电流。但是,如果外场很强,束缚电荷挣脱束缚而成为自由电荷,则绝缘体就会被“击穿”而成导体。
6.什么是外光电效应和内光电效应,他们有那些应用
答:在光照下,物体向表面以外的空间发射电子(即光电子)的现象称为外光电效应。物体受到光照后所产生的光电子只在物质内部运动而不逸出物质的现象称为内光电效应,内光电效应又可分为光电导效应和光伏特效应。
外光电效应可用于制造光电管和光电倍增管。
内光电效应中光电导效应可用于制造光敏电阻、光生伏特效应可用于制造光电二级管、光电池、光电三级管等。
第二次作业
1.光电检测器件中常见的噪声有那些,
答:光电检测器件中常见的几种噪声为:热噪声,散粒噪声,产生-复合噪声,I/f噪声,温度噪声等
(1)热噪声,为载流子无规则的热运动造成的噪声。
(3)散粒噪声,噪声所呈现的起伏就像射出的散粒无规则的落在靶子上呈现出的一样随机起伏。
(3)产生-复合噪声,在半导体中一定温度下或者在一定光照下载流子不断的产生-复合,尽管在平衡状态下载流子产生和复合的平均数是一定的,但其瞬间载流子的产生和复合是有起伏的,在外加电压下,电导率的起伏使输出电流中带有产生-复合噪声
(4)I/f噪声:出现在大约1KHz以下的低频范围内,而且与光辐射的调制频率成反比,故称低频噪声或I/f噪声。
(5)温度噪声:在热噪声中,不是由于辐射信号的变化,而是由于器件本身吸收和传导的热交换引起的温度起伏称为温度噪声。
2,光敏电阻结构设计的基本原则是什么,由此又什么结论
答:光敏电阻的光电导灵敏度在微弱辐射作用情况下与光敏电阻两电极间距离的二次方成反比,而在强辐射作用的情况下则与光敏电阻两电极间的距离3/2次方成反比,因此为了提高光敏电阻的光电导灵敏度,要尽可能地缩短光敏电阻两电极间的距离,这就是电阻结构设计的基本原则。
由此可以得出光敏电阻两电极间的距离缩短,其光电灵敏度越高。
5、什么是光生伏特效应?那些光电器件是利用光生伏特效应工作?
答:光生伏特效应是指半导体在收到光照射时产生电动势的现象,是一种少数载流子导电的光电效应。
光电池、光电二极管、光电三极管等光电器件都是利用光生伏特效应工作的。具有暗电流小、噪声低、响应速度快、光电特性的线性好、受温度的影响小等特点。
6、光电二极管和光电三极管有何区别它们在使用时需要注意哪些问题?
答:光电二极管和光电三极管都是光伏效应器件,光电二极管和普通二极管一样,是由一个PN结组成的半导体器件,接收光照后,产生于入射光强度成正比的光生电流,再把光信号转换为电信号以达到探测目的。光电三极管相当于在晶体三极管的基极和集电极间并联一个光电二极管。其主要区别时光电二极管线性度高些。而光电三极管的灵敏度高。但光电二极管工作时需要加反向偏置电压,且更适用于高频响应场合。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)