二者之间结构差异主要体现在样品在电子束光路中的位置不同。透射电镜(TEM)的样品在电子束中间,电子源在样品上方发射电子,经过聚光镜,然后穿透样品后,有后续的电磁透镜继续放大电子光束,最后投影在荧光屏幕上扫描电镜(SEM)的样品在电子束末端,电子源在样品上方发射的电子束,经过几级电磁透镜缩小,到达样品。当然后续的信号探测处理系统的结构也会不同,但从基本物理原理上讲没什么实质性差别。
相同之处:都是电真空设备,使用绝大部分部件原理相同,例如电子枪,磁透镜,各种控制原理,消象散,合轴等等。
2、SEM和TEM基本工作原理:
透射电镜(TEM):电子束在穿过样品时,会和样品中的原子发生散射,样品上某一点同时穿过的电子方向是不同,这样品上的这一点在物镜1-2倍焦距之间,这些电子通过过物镜放大后重新汇聚,形成该点一个放大的实像,这个和凸透镜成像原理相同。这里边有个反差形成机制理论比较深就不讲,但可以这么想象,如果样品内部是绝对均匀的物质,没有晶界,没有原子晶格结构,那么放大的图像也不会有任何反差,事实上这种物质不存在,所以才会有这种牛逼仪器存在的理由。经过物镜放大的像进一步经过几级中间磁透镜的放大(具体需要几级基本上是由电子束亮度决定的,如果亮度无限大,最终由阿贝瑞利的光学仪器分辨率公式决定),最后投影在荧光屏上成像。由于透射电镜物镜焦距很短,也因此具有很小的像差系数,所以透射电镜具有非常高的空间分辨率,0.1-0.2nm,但景深比较小,对样品表面形貌不敏感,主要观察样品内部结构。
扫描电镜:电子束到达样品,激发样品中的二次电子,二次电子被探测器接收,通过信号处理并调制显示器上一个像素发光,由于电子束斑直径是纳米级别,而显示器的像素是100微米以上,这个100微米以上像素所发出的光,就代表样品上被电子束激发的区域所发出的光。实现样品上这个物点的放大。如果让电子束在样品的一定区域做光栅扫描,并且从几何排列上——对应调制显示器的像素的亮度,便实现这个样品区域的放大成像。具体图像反差形成机制不讲。由于扫描电镜所观察的样品表面很粗糙,一般要求较大工作距离,这就要求扫描电镜物镜的焦距比较长,相应的相差系数较大,造成最小束斑尺寸下的亮度限制,系统的空间分辨率—般比透射电镜低得多1-3纳米。但因为物镜焦距较长,图像景深比透射电镜高的多,主要用于样品表面形貌的观察,无法从表面揭示内部结构,除非破坏样品,例如聚焦离子束电子束扫描电镜FIB-SEM,可以层层观察内部结构。
透射电镜和扫描电镜二者成像原理上根本不同。透射电镜成像轰击在荧光屏上的电子是那些穿过样品的电子束中的电子,而扫描电镜成像的二次电子信号脉冲只作为传统CTR显示器上调制CRT三极电子枪栅极的信号而已。透射电镜我们可以说是看到了电子光成像,而扫描电镜根本无法用电子光路成像来想象。
铄思百检测SEM和TEM样品制备要求:
TEM测试对样品有以下几点要求:
① 粉末、液体样品均可,固体样品太大了的需要离子减薄、双喷、FIB、切片制样。
② 样品必须很薄,使电子束能够穿透,一般厚度为100~200nm左右
③ 样品需置于直径为2~3mm的铜制载网上,网上附有支持膜
④ 样品应有足够的强度和稳定性,在电子线照射下不至于损坏或发生变化
⑤ 样品及其周围应非常清洁,以免污染。
SEM测试对样品有以下几点要求:
① 粉末样>0.02g;块状样和生物样,直径小于26mm,高度小于15mm
② 样品中不得含有水分;
③ 导电性差及磁性样品为保证拍摄效果,建议喷金
免责声明:部分文章整合自网络,因内容庞杂无法联系到全部作者,如有侵权,请联系删除,我们会在第一时间予以答复,万分感谢。
VC作为一种常用的分析手段,在die level的失效分析中用的很多,比如在做去层分析到CT层次时,通过SEM图像的明暗来判断CT以下的结构(比如栅氧)是否有异常,通常会在Low KV(~0.7KV)和High KV(>5KV)下来检查。在解释VC之前,先简单了解一下SEM成像的原理:
电子束经过加速,打到样品表面,会产生很多种信号,比如X射线,俄歇电子,二次电子,背散射电子等等,其中由于二次电子的成像分辨率比较高而广泛用于SEM成像。当入射电子打到样品表面时,会发生非弹性碰撞,一些核外的电子获得能量跑到样品表面,这些电子叫做二次电子, SEM机台内部的二次电子的探头检测这些二次电子从而成像。
下面进入正题:
我们通常用的基本上都是PVC(Passive voltage contrast),也就是说只需要借助SEM拍照就能实现,此外还有AVC(Active voltage contrast),这就需要SEM内的探针对IC加上偏置以后再检查VC图像。这次我们重点讨论PVC,以下简称VC。
既然SEM图像的明暗是由被探测器接收到二次电子的量来决定的,那二次电子的产生对于我们来说至关重要。二次电子的产率可以通过下面这张图来解释:
σ=Ns/Ne
Ns:发射出二次电子数目; Ne:入射电子数目;其中E1 大约在0.5KV,E2 大约在2KV。
1. 当发射二次电子数目Ns >入射二次电子数目Ne,对应上图绿色区域,此时发生的是positive charge由于能量守恒,此时会在样品表面累积正电荷;(对应Low KV下的VC。)
2. 当发射二次电子数目Ns <入射二次电子数目Ne,对应上图紫色区域,此时发生的是negative charge由于能量守恒,此时会在样品表面累积负电荷;(对应High KV下的VC。)
3. 当两者数目相等,此时没有电荷累积。
Positive VC 的情况:
1.对于floating的位置,由于累积了正电荷,在电场作用下,二次电子向下运动,从而很难被二次电子的探头探测到,此时成像就是暗色;
2.对于grounded的位置,由于没有电荷累积,二次电子被正常探测到,此时成像为亮色。
而在实际应用中,不仅仅存在floating/grounded 的情况,还有别的情况,比如通过CT连出来的N+ in P well, P+ in N well. 其实道理一样,如下:
3. N+ in P well:PN结对于正电荷反偏,这里的CT处会累积正电荷,并且成像偏暗;
4. P+ in N well:PN结对于正电荷正偏,这里的CT处无法累积大量的正电荷,并且成像较亮;
下面这张VC图片和LAYOUT一一对应的情况有助于理解:
Negative VC 的情况:
1. 对floating 的位置,负电荷累积会增加二次电子的接受率,因此显示为亮;
2. 对于grounded的位置,没有负电荷累积,二次电子接受率没有增加,显示为暗;
3. 对于N+ in P well,PN结对负电荷为正偏,不能累积大量负电荷,显示为较暗;
4. 对于P+ in N well,PN结对负电荷为反偏,负电荷累积,显示为较亮。
从书上查了一些内容,书的年代比较久远,可能买不到...有兴趣的话,尝试着去图书馆借一下吧。SEM工作时,电子枪发射的入射电子束打在试样表面上,向内部穿透一定的深度,由于弹性和非弹性散射形成一个呈梨状的电子作用体积。电子与试样作用产生的物理信息,均由体积内产生。
二次电子是入射电子在试样内部穿透和散射过程中,将原子的电子轰击出原子系统而射出试样表面的电子,其中大部分属于价子激发,所以能量很小,一般小于50eV。因此二次电子探测体积较小。二次电子发射区的直径仅比束斑直径稍大一些,因而可获得较高的分辨率。
二次电子像的衬度取决于试样上某一点发射出来的二次电子数量。电子发射区越接近表面,发射出的二次电子就越多,这与入射电子束与试样表面法线的夹角有关。试样的棱边、尖峰等处产生的二次电子较多,相应的二次电子像较亮;而平台、凹坑处射出的二次电子较少,相应的二次电子像较暗。根据二次电子像的明暗衬度,即可知道试样表面凹凸不平的状况,二次电子像是试样表面的形貌放大像。
SEM内在试样的斜上方放置有探测器来接受这些电子。接受二次电子的装置简称为检测器,它是由聚焦极、加速极、闪烁体、光导管和光电倍增管组成。在闪烁体前面装一筒装电极,称为聚焦极,又称收集极。在其前端加一栅网,在聚焦极上加250-300V的正电压。二次电子被此电压吸引,然后又被带有10kV正电压的加速极加速,穿过网眼打在加速极的闪烁体上,产生光信号,经光导管输送到光电倍增管,光信号转变为电子信号。最后输送到显示系统,显示出二次电子像。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)