如何解决高并发问题

如何解决高并发问题,第1张

使用高性能的服务器、高性能的数据库、高效率的编程语言、还有高性能的Web容器,(对架构分层+负载均衡+集群)这几个解决思路在一定程度上意味着更大的投入。

1、高并发:在同一个时间点,有大量的客户来访问我们的网站,如果访问量过大,就可能造成网站瘫痪。

2、高流量:当网站大后,有大量的图片,视频,这样就会对流量要求高,需要更多更大的带宽。

3、大存储:可能对数据保存和查询出现问题

解决方案:

1、提高硬件能力、增加系统服务器。(当服务器增加到某个程度的时候系统所能提供的并发访问量几乎不变,所以不能根本解决问题)

2、本地缓存:本地可以使用JDK自带的Map、Guava Cache.分布式缓存:Redis、Memcache.本地缓存不适用于提高系统并发量,一般是用处用在程序中。

Spiring把已经初始过的变量放在一个Map中,下次再要使用这个变量的时候,先判断Map中有没有,这也就是系统中常见的单例模式的实现。

问题一:java程序员面试时被问到:如何在j2ee项目中处理高并发量访问? 该怎么回答? 请仔细看题干再回答 blog.csdn/y_h_t/article/details/6322823

你是一名java程序员,这些应该知道些吧

问题二:如何处理高并发带来的系统性能问题 那必须了解linux中的基本使用,比如如何找到某个路径,如何打开一个文件,如何编辑修改一个文件等等,那就是linux中命令的使用;还有就是必须知道linux服务器中所用的什么服务器(有weblogic、websphere等等);精通相关服务器的重要属性配置等等。

问题三:JAVA中高访问量高并发的问题怎么解决? 你指的高并发量大概有多少?

几点需要注意:

尽量使用缓存,包括用户缓存,信息缓存等,多花点内存来做缓存,可以大量减少与数据库的交互,提高性能。

用jprofiler等工具找出性能瓶颈,减少额外的开销。

优化数据库查询语句,减少直接使用hibernate等工具的直接生成语句(仅耗时较长的查询做优化)。

优化数据库结构,多做索引,提高查询效率。

统计的功能尽量做缓存,或按每天一统计或定时统计相关报表,避免需要时进行统计的功能。

能使用静态页面的地方尽量使用,减少容器的解析(尽量将动态内容生成静态html来显示)。

解决以上问题后,使用服务器集群来解决单台的瓶颈问题。

基本上以上述问题解决后,达到系统最优。

至于楼上有人提到别用JAVA来做,除非是低层的连接数过大(如大量的端口占用需求),这种情况下考虑直接C来写,其他的可以用JAVA来做。

问题四:项目中怎么控制多线程高并发访问 synchronized关键字主要解决多线程共享数据同步问题。

ThreadLocal使用场合主要解决多线程中数据因并发产生不一致问题。

ThreadLocal和Synchonized都用于解决多线程并发访问。但是ThreadLocal与synchronized有本质的区别:

synchronized是利用锁的机制,使变量或代码块在某一时该只能被一个线程访问。而ThreadLocal为每一个线程都提供了变量的副本,使 得每个线程在某一时间访问到的并不是同一个对象,这样就隔离了多个线程对数据的数据共享。而Synchronized却正好相反,它用于在多个线程间通信 时能够获得数据共享。

Synchronized用于线程间的数据共享,而ThreadLocal则用于线程间的数据隔离。当然ThreadLocal并不能替代synchronized,它们处理不同的问题域。Synchronized用于实现同步机制,比ThreadLocal更加复杂。

1、Java中synchronized用法

使用了synchronized关键字可以轻松地解决多线程共享数据同步问题。

synchronized关键字可以作为函数的修饰符,也可作为函数内的语句,也就是平时说的同步方法和同步语句块。如果再细的分 类,synchronized可作用于instance变量、object reference(对象引用)、static函数和class literals(类名称字面常量)身上。

synchronized取得的锁都是对象;每个对象只有一个锁(lock)与之相关联;实现同步是要很大的系统开销作为代价的,甚至可能造成死锁,所以尽量避免无谓的同步控制。

问题五:如何处理高并发或列举处理高并发的业务逻辑 1、提高系统的并发能力2、减轻数据库的负担这两种用途其实非常容易理解。由于memcached高性能,所以可以同时服务于更多的连接,大大提高了系统的并发处理的能力。另外,memcached 通常部署在业务逻辑层(前台应用)和存储层(主指数据库)之间,作为数据库和前台应用的数据缓冲,因此可以快速的响应前端的请求,减少对数据库的访问。

问题六:数据库怎样处理高并发 1.用一个标识,在选择那张票的时候先用(Update 表 set 票flag=‘占用了!’ where 票flag=‘未占用’ and ........)这样是保险的,不可能存在并发问题,这就牵扯到sql锁机制问题了,你可以测试一下,其实sql中update是先查询出然后删除再添加,但由于使用了update,过程中就自动加锁了,很方便吧2.加锁。Microsoft® SQL Server™ 2000 使用锁定确保事务完整性和数据库一致性。锁定可以防止用户读取正在由其他用户更改的数据,并可以防止多个用户同时更改相同数据。如果不使用锁定,则数据库中的数据可能在逻辑上不正确,并且对数据的查询可能会产生意想不到的结果。虽然 SQL Server 自动强制锁定,但可以通过了解锁定并在应用程序中自定义锁定来设计更有效的应用程序。

问题七:数据库怎样处理高并发 理论上不限制并发连接数的.就是服务器受硬件的限制.过高的并发是会使服务器无法完成并发任务,而造成服务器死机或者假死机.不过数据库软件可以优化并发连接,使并发持续的时间更短,以减起服务器的负担,但是一台服务器不能完成几十万的并发.

问题八:如何处理大量数据并发操作 如何处理大量数据并发操作

文件缓存,数据库缓存,优化sql,数据分流,数据库表的横向和纵向划分,优化代码结构!

锁述的概

一. 为什么要引入锁

多个用户同时对数据库的并发操作时会带来以下数据不一致的问题:

丢失更新

A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破坏了另一个修改的结果,比如订票系统

脏读

A用户修改了数据,随后B用户又读出该数据,但A用户因为某些原因取消了对数据的修改,数据恢复原值,此时B得到的数据就与数据库内的数据产生了不一致

不可重复读

A用户读取数据,随后B用户读出该数据并修改,此时A用户再读取数据时发现前后两次的值不一致

并发控制的主要方法是封锁,锁就是在一段时间内禁止用户做某些操作以避免产生数据不一致

二 锁的分类

锁的类别有两种分法:

1. 从数据库系统的角度来看:分为独占锁(即排它锁),共享锁和更新锁

MS-SQL Server 使用以下资源锁模式。

锁模式 描述

共享 (S) 用于不更改或不更新数据的操作(只读操作),如 SELECT 语句。

更新 (U) 用于可更新的资源中。防止当多个会话在读取、锁定以及随后可能进行的资源更新时发生常见形式的死锁。

排它 (X) 用于数据修改操作,例如 INSERT、UPDATE 或 DELETE。确保不会同时同一资源进行多重更新。

意向锁 用于建立锁的层次结构。意向锁的类型为:意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。

架构锁 在执行依赖于表架构的操作时使用。架构锁的类型为:架构修改 (Sch-M) 和架构稳定性 (Sch-S)。

大容量更新 (BU) 向表中大容量复制数据并指定了 TABLOCK 提示时使用。

共享锁

共享 (S) 锁允许并发事务读取 (SELECT) 一个资源。资源上存在共享 (S) 锁时,任何其它事务都不能修改数据。一旦已经读取数据,便立即释放资源上的共享 (S) 锁,除非将事务隔离级别设置为可重复读或更高级别,或者在事务生存周期内用锁定提示保留共享 (S) 锁。

更新锁

更新 (U) 锁可以防止通常形式的死锁。一般更新模式由一个事务组成,此事务读取记录,获取资源(页或行)的共享 (S) 锁,然后修改行,此操作要求锁转换为排它 (X) 锁。如果两个事务获得了资源上的共享模式锁,然后试图同时更新数据,则一个事务尝试将锁转换为排它 (X) 锁。共享模式到排它锁的转换必须等待一段时间,因为一个事务的排它锁与其它事务的共享模式锁不兼容;发生锁等待。第二个事务试图获取排它 (X) 锁以进行更新。由于两个事务都要转换为排它 (X) 锁,并且每个事务都等待另一个事务释放共享模式锁,因此发生死锁。

若要避免这种潜在的死锁问题,请使用更新 (U) 锁。一次只有一个事务可以获得资源的更新 (U) 锁。如果事务修改资源,则更新 (U) 锁转换为排它 (X) 锁。否则,锁转换为共享锁。

排它锁

排它 (X) 锁可以防止并发事务对资源进行访问。其它事务不能读取或修改排它 (X) 锁锁定的数据。

意向锁

意向锁表示 SQL Server 需要在层次结构中的某些底层资源上获取共享 (S) 锁或排它 (X) 锁。例如,放置在表级的共享意向锁表示事务打算在表中的页或行上放置共享 (S) 锁。在表级设置意向锁可防止另一个事务随后在包含那一页的表上获取排它 (X) 锁。意向锁可以提高性能,因为 SQL Server 仅在表级检查意向锁来确定事务是否可以安全地获取该表上的锁。而无须检查表中的每行或每页上的锁......>>

问题九:高并发是什么和如何解决 数据库建立多表关联,关键业务数据字段和查询字段建立索引,对唯一性建立好,同时多任务并发时程序设计时注意数据的合理性检验和用户处理数据有问题时的友好提示见面,建立好的结构文档说明,同时对关键字段的关系型作好记录,有效地设计多表的结构安排,尽量减少数据的冗余,同时又要避免对历史数据的影响,保持良好的数据管理

问题十:如何处理高并发量的HTTP请求 尽量减少页面的HTTP请求,可以提高页面载入速度。减少页面中的元素网页中的的图片、form、flash等等元素都会发出HTTP请求,尽可能的减少页面中非必要的元素,可以减少HTTP请求的次数。

php 高并发解决思路解决方案,如何应对网站大流量高并发情况。本文为大家总结了常用的处理方式,但不是细节,后续一系列细节教程给出。希望大家喜欢。

一 高并发的概念

在互联网时代,并发,高并发通常是指并发访问。也就是在某个时间点,有多少个访问同时到来。

二 高并发架构相关概念

1、QPS (每秒查询率) : 每秒钟请求或者查询的数量,在互联网领域,指每秒响应请求数(指 HTTP 请求)

2、PV(Page View):综合浏览量,即页面浏览量或者点击量,一个访客在 24 小时内访问的页面数量

--注:同一个人浏览你的网站的同一页面,只记做一次 pv

3、吞吐量(fetches/sec) :单位时间内处理的请求数量 (通常由 QPS 和并发数决定)

4、响应时间:从请求发出到收到响应花费的时间

5、独立访客(UV):一定时间范围内,相同访客多次访问网站,只计算为 1 个独立访客

6、带宽:计算带宽需关注两个指标,峰值流量和页面的平均大小

7、日网站带宽: PV/统计时间(换算到秒) * 平均页面大小(kb)* 8

三 需要注意点:

1、QPS 不等于并发连接数(QPS 是每秒 HTTP 请求数量,并发连接数是系统同时处理的请求数量)

2、峰值每秒请求数(QPS)= (总 PV 数*80%)/ (六小时秒数*20%)【代表 80%的访问量都集中在 20%的时间内】

3、压力测试: 测试能承受的最大并发数 以及测试最大承受的 QPS 值

4、常用的性能测试工具【ab,wrk,httpload,Web Bench,Siege,Apache JMeter】

四 优化

1、当 QPS 小于 50 时

优化方案:为一般小型网站,不用考虑优化

2、当 QPS 达到 100 时,遇到数据查询瓶颈

优化方案: 数据库缓存层,数据库的负载均衡

3、当 QPS 达到 800 时, 遇到带宽瓶颈

优化方案:CDN 加速,负载均衡

4、当 QPS 达到 1000 时

优化方案: 做 html 静态缓存

5、当 QPS 达到 2000 时

优化方案: 做业务分离,分布式存储

五、高并发解决方案案例:

1、流量优化

防盗链处理(去除恶意请求)

2、前端优化

(1) 减少 HTTP 请求[将 css,js 等合并]

(2) 添加异步请求(先不将所有数据都展示给用户,用户触发某个事件,才会异步请求数据)

(3) 启用浏览器缓存和文件压缩

(4) CDN 加速

(5) 建立独立的图片服务器(减少 I/O)

3、服务端优化

(1) 页面静态化

(2) 并发处理

(3) 队列处理

4、数据库优化

(1) 数据库缓存

(2) 分库分表,分区

(3) 读写分离

(4) 负载均衡

5、web 服务器优化

(1) nginx 反向代理实现负载均衡

(2) lvs 实现负载均衡


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/320213.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-01
下一篇2023-05-01

发表评论

登录后才能评论

评论列表(0条)

    保存