作者:崔雪薇
《中国交通信息化》记者 崔雪薇当前,新一代通用技术的产业革命正在兴起,为数字化、智能化生产和生活带来了颠覆性的改变。经历了新一波的发展浪潮,人工智能(AI)已无所不在地渗透到人们的生产生活中,当仁不让地成为新一代通用技术的代表。“新基建”风口下,围绕“AI+”打造的新应用、新业态、新模式不断涌现,人工智能充分发挥了“头雁”效应。
作为“新基建”大潮的重要抓手,智能交通领域备受瞩目,人工智能、5G、工业互联网等数字化技术为交通带来的发展理念、管理模式和服务体验迎来了全局“智变”。如今,各地高速公路的智慧建设如火如荼,随着全国高速公路正式迈进“一张网”运营时代,AI在高速路上的应用,驶入了高速发展阶段。本文结合第二十二届中国高速公路信息化大会上的经验分享,对人工智能在智慧高速上的融合应用进行了简单梳理。
随着撤站工作的圆满收官,全国高速公路实现了“一张网”运营。在此形势下,路段经营单位对运营管理产生了新的诉求:(1)希望在技术、服务、管控、协同等方面进一步突破,推进少人、无人化的“高效经济”收费场景实现;(2)既要实现路段的精细化管理,又要做到通行费应收尽收,确保自身权益;(3)路段海量、多元的路网设备、设施急需智能化、自动化技术的保障与支撑,确保边、端设施安全、稳定运行。为解决上述痛点问题,招商华软信息有限公司依托“AI+云”技术,构建智慧收费2.0版本,全面赋能路段的收费稽核、运营分析、运维管理、运行监测及基础收费业务。
AI+云,突破尝试
招商华软打造了统一的智慧收费云平台,将收费业务及相关运管业务迁移上云,高效实现各业务之间的多维协同管理。在该平台的赋能支撑下,还利用高智能的车道机器人为路段经营单位打造了无人收费站解决方案。
无人收费站是“AI+云”场景化应用的突破性尝试,是路段实现降本增效的实用举措,也是智慧收费发展的必经阶段。前端车道机器人的AI能力与云端智慧收费云的统筹能力相结合,极大提升了目前车道收费的服务价值。
无人收费,彰显智能
车道机器人是无人收费站的智能化前端AI设备,整机通过集成车道收费所需的多种硬件模块,辅以人机交互工程设计,借助边缘计算、智能语音、4G/5G等技术手段,实现收费站现场无人化自助收费和特情自动化处理。
无人收费站解决方案实现了前端设备智能化、现场支撑全面化、后台系统智慧化、运营投入经济化。相对于传统的无人收费模式,其具备以下突出能力:适用于多种车道应用场景的收费模式,如ETC收费、MTC收费、混合收费等,支持ETC卡、微信、支付宝、云闪付等多种非现金支付手段,未来将具备接受现金支付的能力;集成人工智能单元,支持与车主进行智能语音交互,在现场无人介入的情况下也能快速定位用户问题,为车主提供便捷有效的客户服务;同时,可大幅减少路段经营管理单位的人力成本支出。
示范应用,加速落地
目前,招商华软智慧收费云平台已经在招商公路广西桂林公司及周边路段落地应用,且运行效果良好,基本满足了日常收费、监控、稽查分析和运维工作的需要,极大提升了路段的运管工作效率。佛山一环西龙收费站北行出口收费广场已开通无人收费的机器人示范车道;哈大高速各条车道的车道机器人也已安装完成并投入使用。
在实际的车道收费应用中,95%的收费业务均可以通过车道机器人的高智慧逻辑处理能力来完成。对于不到1%的需要现场处理的问题,可通过步兵式作业工具“综合服务回控终端”提供服务。
2019年11月13日,交通运输部办公厅发布《全国高速公路视频联网监测工作实施方案》和《全国高速公路视频联网技术要求》,提出加快推进“可视、可测、可控、可服务”的高速公路运行监测体系建设,深入研究人工智能等先进技术在视频联网监测领域的应用,在2021年6月实现智慧监测。视频监控为运营管理效率和公共服务能力提升发挥了积极的作用,随着海量视频数据的不断累积,如何实现实时检测、动态监视、智能控制、及时服务、准确预测的智慧监测成为当前技术领域面临的重要挑战。山西交通职业技术学院的张海亮博士依托山西高速的视频联网建设,分享了AI技术在高速公路视频云联网中的应用。
深度学习,大显身手
从架构来看,高速公路视频联网采用云、边、端三层架构。其中,边缘智能分析系统采用新一代视频交通事件智能监测系统,具备随时接入、实时分析、实时报警、准确率高等特点。随着数据的不断积累,系统运行时间越长,识别算法越智能,检测准确率越高。基于深度学习技术,系统可实现以下功能。
交通事件及交通流检测:采用基于深度学习技术的多目标检测、目标跟踪算法,通过接入高速视频云联网的视频数据,边缘智能分析系统能够实现道路拥堵、交通事故、车辆逆行、违规停车、行人闯入、抛洒物、变道、施工、烟火、团雾、占用应急车道等交通事件,以及交通流量、交通参数等交通态势的分析。车辆结构化分析:通过智能算法,提取车辆特征数据,实现车辆结构化分析,应用于车辆研判、违法处罚、逃费检测、收费稽查等业务。视频质量诊断:通过图像识别算法,进行视频画面质量诊断分析,巡检评估外场设备状态,及时发现设备问题,快速应对。
数据分析,高效管理
省级云平台通过“AI+大数据”技术,融合路段视频数据、边缘智能分析系统的海量感知数据,通过海量数据模型训练和深度学习,进行数据计算、数据分析、数据挖掘、综合研判,实现智能监管、交通态势分析、预测预警、应急处置等智慧监测应用。同时,通过数据门户向外部系统和应用提供数据目录、API、数据应用和可视化展示。
高速公路视频联网后的大数据分析不仅能够实现行业运行态势实时监测、预测预警,还能够为行业运营管理决策提供科学依据,也能够对职能和业务流程监管、分权分域管理、可视化业务展示提供数据支撑,提高运营管理效率。在逻辑架构上,基于AI的省级智能预警平台与省级视频云平台一同部署在省中心,基于前端信息采集终端设备、路段视频上云、视频大数据智能分析应用平台,实现云联网视频数据的融合应用。
试点山西,成效显著
近些年来,山西高速一直积极开展高速公路智能运行监测相关研究,特别是对高速公路视频联网智能分析系统和平台做了大量基础性工作。基于AI的智能平台在具体实际应用中取得了理想的效果。系统平台建设以最先进的高性能GPU集群为物理载体,首创分布式深度学习算法及多任务神经网络模型,极大地提升了系统的精准性和并行效率,使系统具备极高的先进性,体现在以下4个方面。
(1)见多识广,通过对海量训练样本的深度学习,以及随着系统部署、应用的增加,系统准确性越来越高。(2)平台先进,系统采用了基于数据流的大数据计算引擎Yita,使用神经网络分布式训练平台,提高了收敛速度,缩短了训练时长,提高了模型迭代效率。(3)算法超前,研究开发了多种算法,能够实现对交通事件、车辆信息的准确识别。(4)持续进化,在具体系统应用过程中,系统检测结果通过人工确认后,不断增加正负样本,可以持续学习,不断进化。
福建省高速公路信息 科技 有限公司的黄来荣高级工程师在会上分享了福建省基于人工智能和物联网的省级联网收费运行监测系统方案。省界收费站取消后,ETC费显系统进行了优化,福建省联网收费系统整体运行平稳。联网收费对运行监测依赖度高,主要体现为在线计费、状态名单同步、全网最小费额下发、门架计费模块升级等,存在点多面广、监测内容多、设备种类复杂、运行监测要求高等难点。因此,需要有一套系统的工具对车道、门架、后端系统进行快速问题诊断,提高系统运维效率和准确性。福建省高速公路将原有的收费运维管理系统、ETC车道运行监测系统和ETC门架运行监测系统进行融合,已成功上线福建省高速公路联网收费运行监测系统,保障了联网收费各层级系统的正常运转。
目标明确,功能完备
省级联网收费运行监测系统建设主要围绕以下4个目标:提升ETC客户服务水平;保障单位和多省交易,实现“分段计费,出口统一收费”;促进厂商提升产品质量和售后服务水平;提高日常机电维护水平。
建设内容有:车道系统运行监测,包括车道设备监测、车道工控机监测、车道数据监测、车道交易监测;门架系统运行监测,包括ETC门架设备监测、门架主机监测、门架数据监测、车道交易监测;后端系统运行监测,包括后端设备监测、后端主机监测、后端应用监测、后端数据监测;系统告警,包括分级分类告警、严重告警置顶提示、告警推送;运行监测工具,包括系统升级类检查工具、参数下发类检查工具、故障诊断类检查工具。
智能分析,科学预警
系统使用NumPy、Pandas和基于机器学习的scikits-learn等组件,可通过决策树回归算法分析故障原因;通过k-means聚类算法寻找离群点,分析并预测门架或车道 健康 状态;通过朴素贝叶斯算法预测设备故障,需提前进行设备养护,从而进行如下智能分析。
1、厂商主题分析按设备厂商进行分类,统计交易成功率、捕获率、异常量等数据,促进设备厂商提供高品质产品、提升售后服务水平。2、用户主题分析(1)同行介质状态:提示OBU低电、锁死、损坏或即将超出有效期待等。(2)充值提醒:当储值卡低于用户常规形成一定比例时进行充值提醒。(3)新状态名单提醒:当用户被列入状态名单时进行提醒。(4)形成规律结合用户服务:根据用户的形成规律,提供路况信息、沿途服务(如服务区)信息等。(5)连续异常提醒:当某一OBU在车道和门架上异常交易达到某一阈值时进行用户提醒,召回检查。3、故障预测预警(1)车道系统故障预测:通行效率下降、异常交易比例提高可能预示着车道系统故障;车道车牌识别率下降可能预示着牌识故障或需要进行维护调优。(2)门架系统故障预警:门架异常交易比例提高、捕获率降低通常预示着门架系统出现故障;某一车道的RSU或牌识捕获率下降通常预示着该设备故障或需要进行及时维护。(3)设备与环境关联预警:通过聚类分析或关联因素分析,识别设备与环境的规律关系,如跳电与雷雨天气的关系、车牌识别率与天气的关系等。
隧道存在空间封闭、事故多发、处置困难、防控薄弱等痛点,亟待在现有技术基础上开发新的隧道风险防控技术与装置。在“新基建”的东风下,一套支持动态巡航、兼顾高精度与实时性的智能交通巡检系统平台应运而生。重庆交通大学的马庆禄副教授在会上对该平台进行了介绍,该平台能够实现渗水检测、裂缝检测、隧道内环境检测;实现交通事故巡检,交通运行状态、重要交通基础设施以及交通量、车速等交通参数的实时检测及分析处理。检测精度均大于80%。
融合创新,提质升级
作为该平台的前端设备,隧道云智能巡检机器人融合了人工智能、5G、虚拟现实、工业物联网技术,依托高端 科技 手段,提质升级隧道智慧管养水平,积极响应国家的“新基建”政策。
隧道云智能巡检机器人采用边缘人工智能技术,与传统的基于云的计算方式相比,该技术在计算和信息生成源的物理接近性方面带来了低延迟、能量高效、隐私保护、带宽占用减少、及时性和环境敏感性高等优势,使隧道巡检机器人感知更敏捷,风险识别与应急决策更智能。5G具有大带宽、低延时的传输能力,平台建立基于边缘设备的区域性高速容量5G传输网络,集成红外热像仪、激光/毫米波雷达、高清全景摄像机等各种尖端技术, 探索 5G网络在公路隧道中的应用示范。
智能巡检,安全高效
云智能巡检机器人助力“新基建”与“交通强国”加速推进,实现路桥隧全天候、无人值守下的智能巡检,可最大限度提高隧道安全性。相比传统人工巡检,其具有以下优势:
(1)通过云智能机器人将照明、通风、消防等机电系统网联于一体,实现自适应联控;(2)利用机器人配载激光雷达、热像仪等传感器,对裂缝、渗漏等灾害动态感知;(3)机器人可以第一时间抵达现场,实时远程交通监控、应急救援与疏散指挥。
2020年一场突如其来的疫情对“新基建”提出了非常迫切的要求。疫情的远程化、无接触、智能化应对刺激了新的市场需求,倒逼传统产业加快数字化转型的步伐,智能交通的建设也因此成为城市发展实打实的刚需。作为“新基建”的主要内容,以人工智能为代表的“云大物移智”等新技术的深度融合碰撞,形成了新一代信息基础设施的核心能力。交通AI化是大势所趋,除本文所述内容,AI在城市公共交通、自动驾驶等领域同样发挥了不容小觑的作用。在智慧高速领域,AI在云、管、边、端全面赋能,给收费、稽核、监控等应用场景带来了全新升级,驶入高速,上桥入隧,无所不在。 科技 的迭代速度令人瞠目,5G浪潮迅猛来袭,流量的爆发将带动数据处理分析能力的发展,人工智能也将迎来新的机遇和挑战。随着新一代信息技术的飞速发展,条条大路都将被赋予强大的颠覆性力量,通向无边无界的智能未来。
(原文刊载于2021年第3期《中国交通信息化》)
姓名:毛智 ;学号:21021110040 ;
学院:电子工程学院。
转自 http://www.its114.com/html/itswiki/library/2020_05_110167.html
【嵌牛导读】本文主要介绍了通信感知一体化的应用场景智能交通。
【嵌牛鼻子】6G 智能交通
【嵌牛提问】什么是智能交通?智能交通可以实现那些现在不能实现的功能?现有水平如何?
【嵌牛正文】
一、发展背景
(一)智能交通系统及 车联网 发展简述
智能交通系统(ITS)是对通信、控制和信息处理技术在运输系统中集成应用的统称,是一种通过人、车、路的密切配合来保障安全、提高效率、改善环境和节约能源的综合运输系统。
我国智能交通系统的发展共分为三个阶段:起步阶段(2000年之前),实质性建设阶段(2000—2005年),高速发展阶段(2005年至今)。起步阶段主要进行城市交通信号控制的相关基础性研究,进一步建立了电子收费系统、交通管理系统等示范点,使得智能交通系统进入推广应用和改进阶段,但整体水平滞后。在实质性建设阶段,国家投入大量资金进行ITS的研发、生产和普及,为ITS的发展创造了有利条件。高速发展阶段,随着人工智能、自动驾驶、 车联网 等技术的快速发展,以建设“智慧城市”、“绿色城市”和“平安城市”为目标,我国ITS技术得到了进一步发展和更为广泛的应用。
近年来,以自动驾驶为代表的新兴技术快速发展,已成为未来智能交通系统中不可或缺的关键技术之一。美国机动车工程师学会(SAE)将自动驾驶分为从0到5共六个级别,级别越高,自主化驾驶程度越高。为提高自动驾驶车辆的安全性,车辆通常搭载多种传感器,如光学摄像机、超声波雷达、毫米波雷达以及激光雷达等,以此来提高单车的环境感知能力,有助于车辆的行程控制、安全驾驶预判等操作。此外,5G车联网等技术的发展也为车与车之间的智能协同提供了多种通信技术手段,助力自动驾驶技术发展。
二、为什么需要智能交通
近年来世界各大车企和研究所通过在车辆搭载多种传感器来增强车辆的环境感知能力,对路况数据进行采集,并利用机器学习等算法进行离线学习和在线决策相结合的方法,实现提高自动驾驶的安全性和可靠性的目标。然而,由于车辆传感器(如:雷达、光学摄像机)易受障碍物、雨雪天气、强弱光线等多种因素的影响,导致基于单车传感器的环境信息感知能力受限,易发生车辆碰撞及因物体识别故障导致的自动驾驶事故。因此,亟须通过智能车联技术对超视距感知能力进行增强,突破单车传感器环境感知能力受限的技术瓶颈,提高自动驾驶的安全性和可靠性。与此同时,为满足面向超视距感知的车间信息共享的低时延和高速率传输要求,本文提出了一种基于毫米波频段时域资源动态共享的感知通信一体化智能车联传输系统,以保证车间感知信息宽带可靠共享。并针对感知和通信的业务优先级,设计了动态时间分配和灵活波束控制算法,优化感知通信一体化系统的整体性能。设计并研发了基于毫米波技术的感知通信一体化智能车联系统验证平台,实现了核心功能和关键技术的原理性验证。
三、感知通信一体化智能车联系统设计面临的挑战
为了提高自动驾驶车辆的超视距环境感知能力,通过多车协同实现感知信息的融合是实现途径之一。为克服现阶段多车间传感器信息融合所面临的信息格式迥异、融合效率低等难题,亟须通过感知和通信系统的联合设计来提高车辆间信息融合的智能化水平,保障自动驾驶对环境感知能力提升和信息时效性融合的要求。下面分别介绍面向超视距感知的智能车联系统典型应用场景以及感知通信一体化设计所面临的挑战。
(一)面向超视距感知的智能车联系统典型应用场景
图1为面向超视距感知的多车协同智能车联系统的典型应用场景。其中,车辆B、D和E是可由车辆A的雷达传感器直接探测到的车辆目标。但是,由于受到前方车辆B和D的遮挡,车辆A的感知范围受到极大限制,导致车辆C和F处于车辆A的盲区。因此,为扩展车辆A的雷达传感器探测距离和范围,通过采用毫米波宽带传输技术将车辆B和D的雷达感知信息回传给车辆A,并由车辆A进行多源信息融合,来提升车辆A的超视距感知能力,从而提高智能车联系统的安全性和可靠性。
(二)感知通信一体化智能车联系统设计面临的挑战
虽然采用多车协同的智能车联系统可以提高环境信息感知能力,但是感知通信多系统的一体化设计却面临诸多挑战。首先,感知与通信的信号形式、信号处理机制、系统性能评估参数各不相同。因此,如何设计有效的系统性能评估方法至关重要。其次,车辆间多种时延敏感的感知数据的融合受限于多种软件和差异化硬件平台,如何实现感知信息的快速融合以满足低时延、高可靠的信息传输要求,也是一体化系统设计面临的难题之一。最后,针对高移动性车联网场景,如何实现毫米波宽带通信的快速波束对准和波束追踪,是保障感知数据宽带传输可靠性所面临的又一难题。
四、感知通信一体化智能车联系统设计框架
(一)感知通信一体化系统设计框架
针对智能车联系统设计面临的高速率、低时延传感信息融合的挑战,本文提出了基于感知通信一体化设计的智能车联系统框架(见图2),以实现多车协同超视距感知的目标。
首先,车辆通过多传感器获取的环境信息具有不同的优先级,将时延敏感的感知信息分为高优先级数据和低优先级数据,并通过能力不同的通信技术分别进行传输。例如:高优先级的数据对时延、数据速率的要求较高,可以通过车—车直连的宽带链路进行传输;低优先级的数据对时延、数据速率要求较低,可以通过车辆到基础设施的中低速率链路进行传输。此外,还可以结合感知信息时延敏感度不同的特性对感知和通信两系统的帧长占比情况进行动态灵活配置,提出感知通信一体化系统中时隙动态可调帧结构方法。除帧结构中用于控制信令传输的时隙之外,针对时延敏感度高的信息采用短子帧,而对时延敏感度低的信息采用长子帧,信息传输过程中也可以根据业务需求对子帧长度进行动态配置,并结合车间通信采用的毫米波技术特点,提出毫米波波束快速对准与追踪技术,优化波束搜索空间维度和算法的复杂度,满足时延敏感信息的快速可靠传输需求。
(二)感知通信一体化系统评估指标
针对感知通信一体化系统设计面临的诸多挑战,为有效评估所设计的一体化系统的性能,亟需能够科学分析和度量感知通信两系统融合所带来的性能提升与开销的性能指标。传统的两系统融合的评估方法是将其中一个系统的性能指标转换为另外一个系统的指标。考虑到感知信息种类和方式的多样性,以雷达感知数据为例,雷达信息估计率可以用随机参数的熵和雷达估计不确定性的熵来表示,可类比于基于信息熵的通信系统数据速率的表示理论。另外,基于最小均方误差的通信度量的变体形式可以将通信指标转换为类似于雷达估计克拉美罗界形式的有效度量指标。因此,感知通信一体化系统中的统一度量和评估的指标是进行两系统融合性能评估不可或缺的关键性指标,需要考虑一体化系统的多重功能进行联合设计。
(三)任务驱动的动态时隙分配帧结构
不同传感信息传输的方法在很大程度上取决于业务的时延敏感度和优先级。例如,汽车碰撞和道路安全危险报警属于紧急类感知信息,对于自动驾驶车辆而言具有高优先级,通过车辆间的毫米波链路传输来保证低时延信息传输要求。另一方面,例如:交通拥堵、最佳路线规划和娱乐视频等低优先级信息,可以通过车辆到基础设施通信链路来传输,因其优先级相对紧急类感知信息较低。与此同时,通过使用基于灵活时隙分配的动态帧结构能够满足不同优先级、时延敏感和非敏感等业务需求,保证低时延和高可靠数据传输。为此,本文提出一种面向感知通知一体化智能车联系统的基于5G新空口的新型帧结构,提供灵活的帧结构配置方法,实现感知和通信功能的按需时隙灵活动态配置,帧结构设计如图2所示。另外,考虑到存在传输紧急信息(如交通事故、行人横穿马路等紧急事件)的需求,本文还设计了基于微小子时隙的动态子帧时隙配置方法,以保障低时延信息传输。
(四)基于博弈论的资源分配方法
为使感知通信一体化系统中的感知和通信所占用的传输时间能够根据时延敏感性业务的需求进行动态调整,将帧结构划分为可动态变化的感知功能子帧和通信功能子帧,如图2所示。以雷达感知为例,对于一帧而言,如果雷达探测持续时间较长,则通信传输持续时间将变短;另一方面,感知与通信两种不同的功能所占用的时间与其性能密切相关。此外,雷达感知的信息需要尽可能地在后续通信传输时间内得到有效的传输,否则将失去雷达感知信息的时效性。因此,雷达持续时间与通信传输时间之间是一种相互制约的关系,可以采用非合作博弈理论和方法对时间资源进行优化分配,实现感知与通信一体化系统性能的最优化。对基于时分的感知通信一体化系统进行时间资源分配,需要在雷达信息量不大于通信信息量的限制条件下,对不同雷达持续时间配比情况下的雷达信息量进行优化,找到最优的雷达通信持续时间配比,实现雷达与通信传输信息量的联合最优化,提升车辆的环境感知性能和多车感知数据的传输与融合性能。
(五)基于强化学习的灵活波束控制方法
为解决车辆间高带宽大流量感知信息的有效传输与融合的难题,本文提出可以通过采用毫米波波束控制方法与技术实现车间可靠信息传输。毫米波通信技术采用大规模相控阵天线和波束成形技术来增强接收器处的信号强度以克服信号的损耗和衰减问题。此外,前一时隙中的雷达感知信息可以用于辅助车辆间的波束对准和波束追踪过程,有效降低波束调控的时间开销。在波束对准过程中,车辆之间的位置关系可从雷达感知信息中获得,对感知信息加以利用可以最小化波束搜索空间并有效降低波束对准的时间。并基于雷达感知信息中包含的车辆速度和轨迹等信息,设计了基于强化学习的波束追踪算法,实现车辆移动场景下波束的快速切换,保证车辆间的通信链路可靠性和链路连接稳定性。
四、感知通信一体化智能车联系统验证平台
因为工作于20~30GHz毫米波频段的短程雷达和中程雷达系统已在车辆防撞和盲点检测中得到广泛应用。为此本文设计并搭建了工作于26 GHz毫米波频段的感知通信一体化验证平台,通过聚合8个100 MHz载波频段来得到800 MHz的宽带毫米波通信带宽,以验证所提出的感知通信一体化系统的核心功能和关键技术。该平台收发两端采用了具有64阵元的毫米波相控阵天线,验证快速波束对准和波束追踪算法的性能和可行性,如图3所示。
感知通信一体化测试平台的结果如图4所示,车辆A的雷达感知结果表示车辆B、D和E存在于距离车辆A分别为18米、14米和30米处,但由于车辆遮挡了雷达探测信号,车辆C和F处于车辆A的盲区。车辆B和D分别通过各自的雷达感知到车辆C和F的位置信息,并通过毫米波宽带通信链路与车辆A共享车辆B和D的信息。最终,通过整合来自车辆B和D的雷达感知信息,提高了车辆A的环境感知能力,实现了超视距感知。
五、未来技术展望
随着人工智能技术的不断成熟和广泛应用,自动驾驶、多车协同虚拟现实以及增强现实信息融合等技术,将有望扩大单车感知视野、提升单车感知能力,提高车联系统的安全性和智能化水平。考虑到自动驾驶汽车的快速发展势头,面向超视距感知的感知通信一体化智能车联系统将全面突破单车感知能力瓶颈,通过多车协同、感知和通信系统融合等方式,提高智能车联系统的安全性和可靠性,并将成为未来五到十年内本领域的研究热点。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)