SEM、TEM、XRD、AES、STM、AFM的区别

SEM、TEM、XRD、AES、STM、AFM的区别,第1张

SEM、TEM、XRD、AES、STM、AFM的区别主要是名称不同、工作原理不同、作用不同、

一、名称不同

1、SEM,英文全称:Scanningelectronmicroscope,中文称:扫描电子显微镜

2、TEM,英文全称:TransmissionElectronMicroscope,中文称:透射电子显微镜。

3、XRD,英文全称:Diffractionofx-rays,中文称:X射线衍射。

4、AES,英文全称:AugerElectronSpectroscopy,中文称:俄歇电子能谱。

5、STM,英文全称:ScanningTunnelingMicroscope,中文称:扫描隧道显微镜。

6、AFM,英文全称:AtomicForceMicroscope,中文称:原子力显微镜。

二、工作原理不同

1.扫描电子显微镜的原理是用高能电子束对样品进行扫描,产生各种各样的物理信息。通过接收、放大和显示这些信息,可以观察到试样的表面形貌。

2.透射电子显微镜的整体工作原理如下:电子枪发出的电子束经过冷凝器在透镜的光轴在真空通道,通过冷凝器,它将收敛到一个薄,明亮而均匀的光斑,辐照样品室的样品。通过样品的电子束携带着样品内部的结构信息。通过样品致密部分的电子数量较少,而通过稀疏部分的电子数量较多。

物镜会聚焦点和一次放大后,电子束进入第二中间透镜和第一、第二投影透镜进行综合放大成像。最后,将放大后的电子图像投影到观察室的荧光屏上。屏幕将电子图像转换成可视图像供用户观察。

3、x射线衍射(XRD)的基本原理:当一束单色X射线入射晶体,因为水晶是由原子规则排列成一个细胞,规则的原子之间的距离和入射X射线波长具有相同的数量级,因此通过不同的原子散射X射线相互干涉,更影响一些特殊方向的X射线衍射,衍射线的位置和强度的空间分布,晶体结构密切相关。

4.入射的电子束和材料的作用可以激发原子内部的电子形成空穴。从填充孔到内壳层的转变所释放的能量可能以x射线的形式释放出来,产生特征性的x射线,也可能激发原子核外的另一个电子成为自由电子,即俄歇电子。

5.扫描隧道显微镜的工作原理非常简单。一个小电荷被放在探头上,电流从探头流出,穿过材料,到达下表面。当探针通过单个原子时,通过探针的电流发生变化,这些变化被记录下来。

电流在流经一个原子时涨落,从而非常详细地描绘出它的轮廓。经过多次流动后,人们可以通过绘制电流的波动得到构成网格的单个原子的美丽图画。

6.原子力显微镜的工作原理:当原子间的距离减小到一定程度时,原子间作用力迅速增大。因此,样品表面的高度可以直接由微探针的力转换而来,从而获得样品表面形貌的信息。

三、不同的功能

1.扫描电子显微镜(SEM)是介于透射电子显微镜和光学显微镜之间的一种微观形貌观察方法,可以直接利用样品表面材料的材料性质进行微观成像。

扫描电子显微镜具有高倍放大功能,可连续调节20000~200000倍。它有一个大的景深,一个大的视野,一个立体的形象,它可以直接观察到各种样品在不均匀表面上的细微结构。

样品制备很简单。目前,所有的扫描电镜设备都配备了x射线能谱仪,可以同时观察微观组织和形貌,分析微区成分。因此,它是当今非常有用的科学研究工具。

2.透射电子显微镜在材料科学和生物学中有着广泛的应用。由于电子容易散射或被物体吸收,穿透率低,样品的密度和厚度会影响最终成像质量。必须制备超薄的薄片,通常为50~100nm。

所以当你用透射电子显微镜观察样品时,你必须把它处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常挂在预处理过的铜线上观察。

3X射线衍射检测的重要手段的人们意识到自然,探索自然,尤其是在凝聚态物理、材料科学、生活、医疗、化工、地质、矿物学、环境科学、考古学、历史、和许多其他领域发挥了积极作用,不断拓展新领域、新方法层出不穷。

特别是随着同步辐射源和自由电子激光的兴起,x射线衍射的研究方法还在不断扩展,如超高速x射线衍射、软x射线显微术、x射线吸收结构、共振非弹性x射线衍射、同步x射线层析显微术等。这些新的X射线衍射检测技术必将为各个学科注入新的活力。

4,俄歇电子在固体也经历了频繁的非弹性散射,可以逃避只是表面的固体表面原子层的俄歇电子,电子的能量通常是10~500电子伏特,他们的平均自由程很短,约5~20,所以俄歇电子能谱学调查是固体表面。

俄歇电子能谱通常采用电子束作为辐射源,可以进行聚焦和扫描。因此,俄歇电子能谱可用于表面微观分析,并可直接从屏幕上获得俄歇元素图像。它是现代固体表面研究的有力工具,广泛应用于各种材料的分析,催化、吸附、腐蚀、磨损等方面的研究。

5.当STM工作时,探头将足够接近样品,以产生具有高度和空间限制的电子束。因此,STM具有很高的空间分辨率,可以用于成像工作中的科学观测。

STM在加工的过程中进行了表面上可以实时成像进行了表面形态,用于查找各种结构性缺陷和表面损伤,表面沉积和蚀刻方法建立或切断电线,如消除缺陷,达到修复的目的,也可以用STM图像检查结果是好还是坏。

6.原子力显微镜的出现无疑促进了纳米技术的发展。扫描探针显微镜,以原子力显微镜为代表,是一系列的显微镜,使用一个小探针来扫描样品的表面,以提供高倍放大。Afm扫描可以提供各类样品的表面状态信息。

与传统显微镜相比,原子力显微镜观察样品的表面的优势高倍镜下在大气条件下,并且可以用于几乎所有样品(与某些表面光洁度要求)并可以获得样品表面的三维形貌图像没有任何其他的样品制备。

扫描后的三维形貌图像可进行粗糙度计算、厚度、步长、方框图或粒度分析。

光学显微镜

光学显微技术是在微米尺度上观察矿物形貌及结构的较普遍的方法,有实体、偏光和反光3种类型。

实体显微镜能较为直观地放大物体,放大倍数不高,一般为几倍至100倍,可以观察矿物形态、解理以及表面较明显的微形貌结构。

偏光显微镜能放大数十倍到数百倍,可以观察矿物的双晶、解理、块状或隐晶集合体形态等特征。

图24-1 透射相衬显微镜的光学系统示意图

图24-2 扫描电子显微镜结构示意图

反光显微镜通常用于不透明矿物的集合体形态的观察。

二、相衬显微镜

相衬显微镜能够观察到矿物表面纳米(nm)尺度的分子层厚度,对推动晶体表面微形貌的研究起了极其重要的促进作用。

相衬显微镜的光学系统能将入射光产生的位相差转换为振幅(或强度)差。前者肉眼无法辨认,经转换后就能直接观察位相差所反映的物体表面(反射)或内部(透射)的结构细节。

相衬显微镜的结构与普通偏光显微镜相似,所不同的是在聚光镜下方插入了一个环形空圈板;另有几个安装有位相板的相衬物镜及同轴调整望远镜3个特殊部分。环形空圈板的作用在于提高分辨率;位相板(即位相过滤器)的作用是加大图像的衬比度。相衬显微镜有透射式与反射式两种类型(透射式的光学系统见图24-1),前者用于观察薄片中矿物内部显微构造,后者用于观察晶体表面。借助相衬显微镜,能清晰看到微米(μm)级、具立体感的微观形貌,对探索矿物的结晶状态和生长机制,提供了许多用常规方法不能获得的丰富信息。

三、电子显微镜

电子显微镜包括透射电镜(TEM)和扫描电镜(SEM),是将电子束激发样品微区产生的信号收集、放大并转换成各种图像、图谱或强度数据,从而直接给出亚微观尺度的样品形貌、结构和成分的仪器。

透射电镜的结构主要由电子枪、电磁透镜(聚光系统)、成像系统、真空系统、显像部分、电源部分及各种附件组成。结构上它与普通光学显微镜相似,不同的是,光学显微镜用可见光作光源,在空气介质中工作,聚光系统是玻璃透镜,最高放大倍数为1000 倍左右,有效分辨率为0.2μm;而透射电镜则用电子束作射线源,由于电子波长很短,其分辨本领很高,为减少运动电子能量损失,在真空下工作,并采用双电磁透镜聚焦,以提高电子束强度和物镜成像后的亮度,放大倍数由几百倍到200万倍,分辨率达0.7~1nm,可观察晶格像、位错、晶体缺陷等微细结构的变化。透射电镜的实验技术,要求制备极薄(100~200nm)的透明样品,目前主要通过离子减薄制样技术获得。

扫描电镜是用细聚焦电子束在试样表面扫描时激发产生二次电子(辅有背散射电子、吸收电子和特征X射线),经收集、处理、放大后成二次电子像,从而获得样品表面的三维立体图像(图24-2)。扫描电镜主要功能是进行高分辨的微形貌观察。

目前扫描电镜普遍的分辨率是4~7nm,放大倍数可从10倍到30万倍,中间连续可调,图像清晰,立体感强。扫描电镜制样简单,对具导电性样品,不必经过加工,只要其大小不大于样品座即可;对于非导电性样品,需在表面喷镀5~20nm厚导电膜,通常是用二次电子发射系数高的金或碳喷镀(习惯称镀金或镀碳)。近年发展起来的环境扫描电镜除了不必喷镀外,还可对活体进行观察,适于进行矿物-生物相互作用研究。

除以上矿物形貌研究方法外,还有光学测角仪,主要对晶体的面角进行测量。

四、扫描探针显微镜

探针显微镜(Scanning Probe Microscope,简称SPM)是指那些以隧道效应为理论基础发展起来的各种分析实验方法。它们都是通过一个探针相对于样品进行扫描,通过监测两者之间电、光、力、磁场等随针尖与样品间隙的变化来获取待测样品表面的有关信息。SPM家族中最为重要的两个成员是扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)和原子力显微镜(Atomic Force Microscope,简称 AFM),其他 SPM 技术均是在此两种技术的基础上发展而来的。1988年和1990年,STM和AFM相继被引入矿物学的研究中,给矿物学、矿物材料学研究增添了一个有力工具。

1.扫描隧道显微镜

STM的基本原理是量子的隧道效应。所谓“隧道效应”是指当两个电极间被加上一个偏压并接近到一定程度时,电子从一个电极转移到另一个电极而产生电流的现象,所产生的电流称为隧道电流。根据产生隧道效应的原理,将原子限度的极细针尖和被研究物质表面作为两个电极,当样品与针尖的距离非常小(通常小于1nm)时,在外加电场作用下,电子会穿过两个电极之间的绝缘层由一个电极流向另一个电极,这种现象即前面介绍的隧道效应。隧道电流I是电子波函数重叠的量度,与针尖和样品之间的距离S及平均功函数X有关:

I∝Vbexp(-AX1/2S)

式中:Vb是加在针尖和样品之间的偏置电压;A为常数,在真空条件下约等于1;X为平均功函数

结晶学与矿物学

式中:X1和X2分别为针尖和样品的功函数。

由上式可知,隧道电流强度对针尖与样品间的距离非常敏感。当功函数为几个eV时,S每改变0.1nm,I将改变一个数量级。因此,利用电子反馈线路控制隧道电流的恒定,并用压电陶瓷材料控制针尖在样品表面的扫描,探针在垂直于样品表面方向上的高低变化就能反映出样品表面的起伏。将针尖在样品表面扫描时运动的轨迹直接在荧光屏或记录纸上显示出来,就得到了样品表面费米能级附近状态密度的分布或原子排列的图像。这种扫描方式称为恒流方式。也可控制针尖高度守恒扫描,通过记录隧道电流的变化来得到样品表面费米能级附近状态密度的分布,这种扫描方式称为恒高模式。因此一般的STM都有两种工作方式:恒流模式和恒高模式。恒高模式可以采用较快的扫描速度,因此可以减小噪音和热漂移的影响,较适合于矿物等较为复杂的物质表面的小范围观察。恒流模式则适合于低速扫描,常用于物质表面较大范围的观察。

扫描隧道显微镜的特点是STM实验不需接触样品就可研究物质表面结构。STM具有原子级的分辨率,使它成为目前分辨率最高的表面分析仪器。STM可以在各种环境中进行实验,STM可以直接观察原子间转移的过程。对于表面的吸附和渗透过程、矿物表面与溶液间的反应过程,STM可能描绘出较为详细的机理。

虽然STM具有很多独特的优点,但同时它也存在自己的局限性,如样品表面原子种类不同,或样品表面吸附有原子、分子时,由于不同种类的原子或分子团等具有不同的电子态密度和功函数,此时STM给出的等电子态密度轮廓不再对应于样品表面原子的起伏,而是表面原子起伏与不同原子和各自态密度组合后的综合效果。STM不能区分这两个因素。STM所观察的样品必须具有一定程度的导电性,对于半导体,观测的效果就差于导体。对于绝缘体则根本无法直接观察。针尖形状对图像有严重影响。

2.原子力显微镜

AFM的探头是对微弱力(如范德华力)极敏感的微悬臂。当微悬臂的针尖接触样品时,针尖尖端的原子与样品表面的原子会产生极微弱的排斥力。扫描样品时通过控制这种力使之恒定,针尖与样品间作用力的等位面便能从原子尺度上反映矿物表面的微形貌。

AFM不仅适用于导电样品,也适用于不导电样品。

3.扫描探针显微镜在矿物学研究中的应用

SPM应用于与矿物有关的研究始于1988年。近10年来SPM已被广泛应用于各种与矿物或矿物材料学研究有关的领域。

(1)矿物材料表面形貌研究

表面微形貌即表面的微观几何形态,是指特征尺度一般在微米级、纳米级到原子级的三维微观形貌。

在表面定性观察方面,SPM是目前分辨率最高的分析仪器。扫描电子显微镜虽是用于固体物质形貌观察的主要手段,但其分辨率难以超过6nm。SPM 的横向分辨率可达原子级,因此SPM填补了物质微形貌观察中分辨率从6nm到原子级之间的空白,使微形貌研究可以在前所未有的高分辨率水平上开展。在表面定量研究方面,SPM较其他分析手段更易实现表面二维、三维形貌数据的计算机采集和处理,进行形貌定量分析。因此SPM在表面形貌定量研究方面具有巨大潜力。国外近年来已开发出一些可计算材料表面二维参数的计算机软件。

SPM在矿物和材料表面形貌研究中的应用已有不少实例,用SPM观察到了很多矿物和其他材料表面重要的微形貌现象,如矿物表面的溶蚀现象、矿物和材料表面的生长纹等。

(2)矿物材料表面原子结构研究

SPM是目前唯一能在正空间观察物质表面原子排布的仪器,因此目前这方面的研究最为活跃。已用SPM观察到了若干矿物、有机和无机材料表面的原子排布、原子缺陷、表面重构、各种畴结构等重要的结构现象。如辉钼矿表面钼原子分布的STM图像、单晶硅表面7×7重构现象的STM像、硬石膏解理面的AFM图像,显示了氧和钙原子的排布等。

(3)矿物材料表面吸附和化学反应研究

表面吸附是表面科学研究中的重要课题。表面科学研究常常需要知道原子或分子吸附在表面的什么部位?它们如何与基底联结?用传统的表面分析技术只能了解表面的平均性质,不能对吸附的原子或分子成像,难以确切回答以上问题。而SPM在这一领域有独特的优点。由于SPM可在溶液中进行实验,因此SPM可用于直接观察表面的化学反应过程,如表面溶蚀过程和表面生长过程等。用SPM便获得了金浸泡在KI溶液中,I原子吸附在金表面的现象

分类: 外语/出国

问题描述:

SEM的原理是什么?

解析:

(SEM)扫描电子显微镜的设计思想和工作原理,早在1935年便已被提出来了。1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到

1956年开始生产商品扫描电镜。近数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展。

一.扫描电镜的特点

和光学显微镜及透射电镜相比,扫描电镜具有以下特点:

(一) 能够直接观察样品表面的结构,样品的尺寸可大至120mm×80mm×50mm。

(二) 样品制备过程简单,不用切成薄片。

(三) 样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。

(四) 景深大,图象富有立体感。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。

(五) 图象的放大范围广,分辨率也比较高。可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。分辨率介于光学显微镜与透射电镜之间,可达3nm。

(六) 电子束对样品的损伤与污染程度较小。

(七) 在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。

二.扫描电镜的结构和工作原理

(一) 结构

1.镜筒

镜筒包括电子枪、聚光镜、物镜及扫描系统。其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面扫描,同时激发出各种信号。

2.电子信号的收集与处理系统

在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm至

几十nm的区域,其产生率主要取决于样品的形貌和成分。通常所说的扫描电镜像指的就是二次电子像,它是研究样品表面形貌的最有用的电子信号。检测二次电子的检测器(图15(2)的探头是一个闪烁体,当电子打到闪烁体上时,1就在其中产生光,这种光被光导管传送到光电倍增管,光信号即被转变成电流信号,再经前置放大及视频放大,电流信号转变成电压信号,最后被送到显像管的栅极。

3.电子信号的显示与记录系统

扫描电镜的图象显示在阴极射线管(显像管)上,并由照相机拍照记录。显像管有两个,一个用来观察,分辨率较低,是长余辉的管子;另一个用来照相记录,分辨率较高,是短余辉的管子。

4.真空系统及电源系统

扫描电镜的真空系统由机械泵与油扩散泵组成,其作用是使镜筒内达到 10(4~10(5托的真空度。电源系统供给各部件所需的特定的电源。

(二) 工作原理

从电子枪阴极发出的直径20(m~30(m的电子束,受到阴阳极之间加速电压的作用,射向镜筒,经过聚光镜及物镜的会聚作用,缩小成直径约几毫微米的电子探针。在物镜上部的扫描线圈的作用下,电子探针在样品表面作光栅状扫描并且激发出多种电子信号。这些电子信号被相应的检测器检测,经过放大、转换,变成电压信号,最后被送到显像管的栅极上并且调制显像管的亮度。显像管中的电子束在荧光屏上也作光栅状扫描,并且这种扫描运动与样品表面的电子束的扫描运动严格同步,这样即获得衬度与所接收信号强度相对应的扫描电子像,这种图象反映了样品表面的形貌特征。第二节 扫描电镜生物样品制备技术大多数生物样品都含有水分,而且比较柔软,因此,在进行扫描电镜观察前,要对样品作相应的处理。扫描电镜样品制备的主要要求是:尽可能使样品的表面结构保存好,没

有变形和污染,样品干燥并且有良好导电性能。

[Last edit by SeanWen]


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/327054.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-02
下一篇2023-05-02

发表评论

登录后才能评论

评论列表(0条)

    保存