八木天线定向工作的原理,可依据电磁学理论进行详尽地数学推导,但是比较繁琐复杂,普通读者也不易理解,这里只做定性的简单分析:我们知道,与天线电气指标密切相关的是波长λ,长度略长于λ/4整数倍的导线呈电感性,长度略短于λ/4整数倍的导线呈电容性。由于主振子L采用长约λ/2的半波对称振子或半波折合振子,在中心频点工作时处于谐振状态,阻抗呈现为纯电阻,而反射器A比主振子略长,呈现感性,假设两者间距a为λ/4,以接收状态为例,从天线前方某点过来的电磁波将先到达主振子,并产生感应电动势ε1和感应电流I1,再经λ/4的距离后电磁波方到达反射器,产生感应电动势ε2和感应电流I2,因空间上相差λ/4的路程,故ε2比ε1滞后90°,又因反射器呈感性I2比ε2滞后90°,所以I2比ε1滞后180°,反射器感应电流I2产生辐射到达主振子形成的磁场H2又比I2滞后90°,根据电磁感应定律H2在主振子上产生的感应电动势ε1'比H2滞后90°,也就是ε1'比ε1滞后360°,即反射器在主振子产生的感应电动势ε1'与电磁信号源直接产生的感应电动势ε1是同相的,天线输出电压为两者之和。同理可推导出,对天线后方某点来的信号,反射器在主振子产生的感应电动势与信号直接产生的感应电动势是反相的,起到了抵消输出的作用。而引向器B、C、D等都比主振子略短,阻抗呈容性,假定振子间距b、c、d也等于λ/4,按上述方法也可推出引向器对前方过来的信号起着增强天线输出的作用。综上所述,反射器能够有效消除天线方向图后瓣,并和引向器共同增强天线对前方信号的灵敏度,使天线具有了强方向性,提高了天线增益。对于发射状态,推导过程亦然。实际制作过程中,通过缜密设计和适当调整各振子的长度及其间距,就能获得工作在不同中心频点、具有一定带宽、一定阻抗值和较好端射方向图的八木天线。
对于设计调整一副天线,我们总希望它能够有较高的效率和增益,足够的带宽,以及较强的信号选择和抗干扰能力,同时与馈线阻抗尽量匹配,竭力降低驻波比和减小信号损耗。然而天线的各项几何参数对其电气性能都有影响,并且往往彼此矛盾、相互牵制,设计调整时不能顾此失彼,要结合实际的用途综合考虑,分清主次,必要时还得牺牲一些次要的性能指标。由于八木天线的增益与轴向长度(从反射器到最末引向器的距离)、单元数目、振子长度及间距密切相关,轴向越长,单元数实际也就是引向器越多,方向越尖锐,增益越高,作用距离越远,但超过四个引向器后,改善效果就不太明显了,而体积、重量、制作成本则大幅增加,对材料强度要求也更严格,同时导致工作频带更窄。一般情况下采用 6 ~ 12 单元就足够了,天线增益可达 10~15 dB,对于高增益的要求,可采用天线阵的办法加以解决。引向器的长度通常为(0.41~0.46)λ,单元数愈多,引向器的最佳长度也就愈短,如果要求工作频段较宽,引向器的长度也应取得短些。引向器的间距一般取(0.15~0.4)λ,大于0.4λ后天线增益将迅速下降,但第一引向器B和主振子的间距应略小于其它间距,例如取b≈0.1λ时,增益将会有所提高。
一般来说,反射器A的长度及与主振子的间距对天线增益影响不大,而对前后辐射比和输入阻抗却有较大的影响,反射器长度通常为(0.5~0.55)λ,与主振子的间距为(0.15~0.23)λ。反射器较长或间距较小可有效地抑制后向辐射,但输入阻抗较低,难于和馈线良好匹配,因而要采取折衷措施。对某些前后辐射比要求较高的使用场合,可以在与天线平面垂直方向上上下安装两个反射器,或者干脆采用反射网的形式。有时为了着重改善天线带宽的低频端特性,还会在主振子的后面不同距离处排列两个长度不等的反射器,其中较短的要离主振子近些。若想改善天线的高频端特性,可适当调短引向器的长度。多元八木天线中引向器的长度和间距可以相等也可不等,从而分成均匀结构和不均匀结构两种形式,不均匀结构的引向器,离主振子越远长度越短,间隔越大,使得工作频带向高频端方向拓展,调整起来相对灵活机动。天线增益越高,带宽也会越窄,有时为展宽频带,还可采用两个激励振子,称为双激,或者直接选用复合式引向天线。考虑到八木天线的各项电气指标在频带低端比较稳定,而高端变化较快,所以最初设计时频率通常要稍高于中心频率。另外振子所用金属管材越粗,其特性阻抗越低,天线带宽也就越大,振子直径通常为(1/100~1/150)λ,当然实际选择时还要考虑天线的整体机械特性。振子的粗细还会影响振子的实用最佳长度,这是因为电波在金属中行进的速度与真空中不尽相同,实际制作长度都要在理论值上减去一个缩短系数,而导线越粗缩短系数越大,振子长度越小,对阻抗特性也造成一定影响。
输入阻抗是天线的一个重要特性指标,它主要由有源振子固有的自阻抗及与其邻近的几个无源振子间的互阻抗来决定的。远处的引向器,由于和主振子耦合较弱,互阻抗可忽略不计。通常主振子有半波对称振子和半波折合振子两种形式,单独谐振状态下,输入阻抗都为纯电阻,半波对称振子的Zin = 73.1 欧,标称 75 欧,半波折合振子的Zin = 292.4 欧,标称300欧,是半波对称振子的四倍。而加了引向器、反射器无源振子后,由于相互之间的电磁耦合,阻抗关系变得比较复杂,输入阻抗显著降低,并且八木天线各单元间距越小阻抗也越低。为了增大输入阻抗,提高天线效率,故主振子多选用半波折合振子的形式,这样也能同时增加天线的带宽。只要适当选择折合振子的长度,两导体的直径比及其间距,并结合调整反射器及附近几个引向振子的尺寸,就可以使输入阻抗变换到等于或接近馈线特性阻抗的数值。尤其值得一提的是,虽然无线电通信机天线端口及采用的同轴电缆特性阻抗都设计成50Ω,而广播电视接收和传输同轴电缆特性阻抗为75Ω,但是对于任一天线,人们总可以通过阻抗调试,在要求频率范围内,使天馈线良好匹配,获得满意的驻波比,所以实用中并不十分注意八木天线输入阻抗的具体数值,而主要以馈线上的驻波比为依据进行尺寸选择或试验调整。如果选用同轴电缆馈电,为保证天线的对称性及与馈线的阻抗匹配,就必须在馈线和天线接口处加入“平衡—不平衡”转换器,例如半波U型环式匹配器、变压器式匹配器等,否则高频信号在传输中衰减严重。因半波U型环式匹配器只需一段λ/2的同轴电缆,结构简单,应用广泛,具体接线方法如图2所示。
由于引向器阵列对增益、后向辐射、输入阻抗等都有影响,故实验调整是八木天线投入使用前必不可少的一个步骤。调试时注意一定要把天线架起来,离开地面高度两、三米以上,以免影响天线的阻抗和仰角。架设八木天线时,振子所在的天线平面既可以和大地平行又可以垂直,只要收、发双方的天线保持相同姿势就行,平行则辐射水平极化波,垂直则辐射垂直极化波,因有足够的隔离度,还可共杆架设两副相互垂直的引向天线,使用起来十分方便。为避免相位关系更加复杂化,降低调整难度,通常折合振子平面要与横梁垂直。因为各振子长度都约为半个波长,振子中点恰好位于电波感应信号电压的零点,所以振子的中点能用金属螺栓和铝质横梁直接固定,不必绝缘,这样还能方便地泄放感应静电。若主振子采用半波对称振子,与馈线相接的地方必须和横梁保持良好绝缘,若采用半波折合振子,中点仍与横梁相通。金属横梁与端射方向上的电场极化方向垂直,因此对天线辐射场不会产生显著的影响。另外需要注意的是,由于天线一般架设在楼顶、阳台等室外环境,受风吹日晒雨淋后接口容易氧化生锈,影响信号的传输和天线的匹配,使收发效果变差,需用防水胶带提前处理,同时还应注意防雷。
虽然说八木天线结构并不复杂,但是若想做好做精也不是一件轻而易举的事,如果自行设计没有足够的把握,可以完全仿照工程理论书籍给出的尺寸,或者借助于一些现成的设计软件,如国外的yagi(下载地址 http://www.ve3sqb.com/)等,只需直接输入频率、单元数和振子直径,就能得到各个单元的最佳尺寸和位置,如图3所示,确保你也能制造出一副优秀的YAGI。理论归理论,只有实践才能出真知,怎么样,还不抓紧动手试一试!
八木天线分配器(双排定向天线制作)
许多人在成功的制作完定向天线後, 其野心也越来越大, 因为既然一个阵列的定向天线已经成功, 何不做做双排的定向天线呢? 没错! 我们就是要本著一颗庞大的野心, 朝著想要达到的目标前进, 这样我们的技术才会提升, 这也是业馀无线电玩家的精神.
只要你完成了前一个单元的实验144MHZ 九节八木天线, 那你要制作一个双排定向天线, 绝不是一件难事. 只要你有了分配器, 想要做几排定向天线都没问题.
两排定向天线合并, 中间一定要有一个分配器, 而两排定向天线的距离大约是天线本身主杆的80%~90%长, 而且分配器两端75欧姆的同轴电缆线要等长.
注意事项:
分配器两端的长度最好是奇数个电子上的四分之一波长, 当你算出物理上的四分之一波长天线长度(也就是第一单元所讲的四分之一波长的算法), 还要用此长度算出电子上的四分之一波长的长度, 来运用在75欧姆同轴电缆线的长度.
例如:天线频率144MHZ, 它的四分之一波长为 0.5 公尺(物理上的), 而我使用的75欧姆同轴电缆线规格为 RG-59, 而RG-59的速率因素为 0.66 (75欧姆同轴电缆线规格有很多种,其速率因素也不同, 请参考出厂规格说明), 所以我还要将刚刚算出的 0.5 公尺再乘上 0.66 , 所以求出在电子上的四分之一波长的长度为0.33公尺. 假设我所需要的电缆线从天线的供电点到T型接头的长度为1.98公尺, 这个长度刚好是6个电子的四分之一波长, 是个偶数, 而我们不要偶数倍, 我们要奇数倍, 所以我们把长度加到2.3公尺(这个长度是7个电子的四分之一波长), 让它成为奇数倍, 这样的效率才是最好的.
天线自身是不可以发送信号的
发送信号的是发射机,天线仅仅是发信机的匹配部件
天线达到最佳发送条件是匹配呃
天线的最佳匹配原理是电路LC谐振原理
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)