在“翼生云网 智造未来——5G+工业互联网高峰论坛”上,工信部总经济师王新哲指出,预计未来超过八成的5G应用来自工业互联网等垂直行业。
5G大带宽、低时延、海量链接和网络切片、边缘计算能力,为智能制造、安全生产提供了高质量的网络支持和数据连接能力,结合工业互联网平台强大的算力及人工智能的算法,5G、云计算以及AI技术的结合将助推工业企业数字化转型升级。
中国信息通信研究院副院长王志勤指出,工业互联网平台不是在工厂内或者局部实现一定的连接,而是要实现全要素全链接。
据GE预测,到2020年,工业互联网年产值将达到2250亿美元,超过消费互联网1700亿美元的产值。而中国大陆等新兴经济体的工业化需求持续促进亚太地区工业互联网平台发展。
这离不开传统制造业转型升级的压力。王志勤表示,经济下行压力加大、劳动力成本持续上升等原因对企业经营管理效率提出更高要求。此外,提升产品质量和价值、加速商业模式创新和降低信息化应用门槛也要求中国工业加快数字化转型。
工业互联网市场巨大的潜能吸引着各种企业参与。根据工业互联网产业联盟发布的《工业互联网平台白皮书(2019讨论稿)》,目前中国各类型平台数量总计已有数百家之多,具有一定区域、行业影响力的平台数量也超过了50多家。
有传统工业技术解决方案企业面向转型发展需求构建平台,如航天云网、海尔、树根互联、宝信、阿里、华为、浪潮、紫光等起步较早的平台;也有大型制造企业孵化独立运营公司专注平台运营,例如徐工、TCL、中联重科、富士康等大型集团企业剥离和整合内部相关资源,注资成立聚焦工业互联网平台业务的独立运营子公司,在服务好集团的基础上对外输出成果。
电信运营商拥有网络连接能力和数据中心资源,自然也不会错过这一市场,中国电信、中国移动和中国联通均发布了自己的工业互联网平台。31日当天,中国电信发布了其工业互联网开放平台。
中国电信副总经理陈忠岳指出,该平台由中国电信自主研发和运营,从工业数据采集、工业数据中台和工业数据应用三个层次为制造企业提供全要素、全价值链、全产业链的数据赋能服务。
通过底层的工业智能网关,平台可以根据客户具体需求加载不同的数采协议转换等边缘应用,将物理空间中的各种生产要素,安全可信地映射成信息空间中的数据。
往上一层是工业数据中台,以数字孪生的方式构建虚拟数字空间。通过数据汇聚和交换,打通信息孤岛,并通过大数据、人工智能挖掘工业知识。
最上层的工业数据应用将汇聚自研、合作厂商和第三方工业互联网平台的工业APP,共同构建起数据互联生态圈。
陈忠岳举例称,在运用5G+工业互联网平台后,钢结构企业中建钢构的生产效率提高了10%,产品不良率下降了10%,运营成本降低了6%。
王志勤则以青岛港口为例,该港口通过5G网络远程控制抓取集装箱,“操控人员不用坐在高高的吊车上,可以在办公室很舒适的环境就完成了工作。”
不过,由于工业互联网还处在发展初期,也面临许多挑战。从产业领域看,优势互补、协同合作的平台产业生态还需持续构建。 大部分平台企业以单打独斗为主,希望自主构建端到端完整的平台架构,即使在自身不擅长的领域投入不必要的资金和人力。王志勤指出,应当积极开展协同合作,构建全国协作的跨领域合作平台。
AI正在成为企业助力决策、提升客户体验、重塑商业模式与生态系统、乃至整个数字化转型的关键驱动力。
但在崭新的AI时代,数据中心网络性能也正在成为AI算力以及整个AI商用进程发展的关键瓶颈,正面临诸多挑战。
为此,华为以“网络新引擎 AI赢未来”为主题发布了业界首款面向AI时代数据中心交换机CloudEngine 16800,将人工智能技术创新性的应用到数据中心交换机,引领数据中心网络迈入AI时代。
AI时代数据中心网络面临三大挑战
当前,数字化转型的持续推进,正在提速驱动数据量暴增;同时,语音/视频等非结构化数据占比持续提高,庞大的数据量和处理难度已远超人类的处理能力,需要基于机器运算深度学习的AI算法来完成海量无效数据的筛选和有用信息的自动重组,从而获得高效的决策建议和智慧化的行为指引。
根据华为GIV 2025(Global Industry Vision)的预测,企业对AI的采用率将从2015年的16%增加到2025年86%,越来越多的企业将利用AI助力决策、重塑商业模式与生态系统、重建客户体验。
作为人工智能的“孵化工厂”,数据中心网络正成为AI等新型基础设施的核心。但与此同时,随着AI时代的到来,AI人工智能的算力也受到数据中心网络性能的影响,正在成为AI商用进程的一大瓶颈。
华为网络产品线总裁胡克文指出,AI时代的数据中心网络将面临以下三大挑战:
挑战1.AI算力。高性能数据中心集群对网络丢包异常敏感,未来的网络应该做到零丢包。但传统的以太网即使千分之一的丢包率,都将导致数据中心的AI算力只能发挥50%。
挑战2.大带宽。未来5年,数字洪水猛增近20倍,现有100GE的网络无法支撑。预计全球年新增数据量将从2018年的10ZB猛增到2025年180ZB(即1800亿TB),现有100GE为主的数据中心网络已无法支撑数据洪水的挑战。
挑战3.要面向自动驾驶网络的能力。随着数据中心服务器规模的增加,以及计算网络、存储网络和数据网络三网融合,传统人工运维手段已难以为继,亟需引入创新的技术提升智能化运维的能力,如何用新的技术去使能、把网络问题排查出来成为业界都在思考的问题。
华为定义AI时代数据中心交换机三大特征
从行业大势来看,随着以人工智能为引擎的第四次技术革命正将我们带入一个万物感知、万物互联、万物智能的智能世界,数据中心网络也必须从云时代向AI时代演进。在华为看来,数据中心需要一个自动驾驶的高性能网络来提升AI算力,帮助客户加速AI业务的运行。
那么,AI时代的数据中心网络究竟该如何建设呢?胡克文指出,“华为定义了AI时代数据中心交换机的三大特征:内嵌AI芯片、单槽48 x 400GE高密端口、能够向自动驾驶网络演进的能力。”
特征1.业界首款内嵌AI芯片数据中心交换机,100%发挥AI算力
从应用侧来看,刷脸支付的背后是上亿次图像信息的智能识别,深度 健康 诊断需要基于数千个算法模型进行分析,快捷网购体验离不开数百台服务器的智能计算。也就是说,新商业物种的诞生,产业的跨越式发展以及用户体验得以改变,强烈地依赖于人脸识别、辅助诊断、智能推荐等AI应用的发展。
但由于AI算力受到数据中心网络性能的影响,正在成为AI商用进程的关键瓶颈。为了最大化AI算力,存储介质演进到闪存盘,时延降低了不止100倍,计算领域通过采用GPU甚至专用的AI芯片将处理数据的能力提升了100倍以上。
CloudEngine 16800是业界首款搭载高性能AI芯片的数据中心交换机,承载独创的iLossLess智能无损交换算法,实现流量模型自适应自优化,从而在零丢包基础上获得更低时延和更高吞吐的网络性能,克服传统以太网丢包导致的算力损失,将AI算力从50%提升到100%,数据存储IOPS(Input/Output Operations Per Second)性能提升30%。
特征2.业界最高密度单槽位48 x 400GE,满足AI时代5倍流量增长需求
数据中心是互联网业务流量汇聚点,企业AI等新型业务驱动了数据中服务器从10G到25G甚至100G的切换,这就必然要求交换机支持400G接口,400GE接口标准化工作已经于2015年启动,目前针对数据中心应用已经完成标准化,400G时代已经来临。
集群的规模是数据中心架构演进的动力,经典的无阻塞CLOS理论支撑了数据中心服务器规模从千台、万台到今天10万台规模的发展,增大核心交换机容量是数据中心规模扩大的最常见手段。以一个1000T流量规模的数据中心组网为例,采用400GE技术,核心汇聚交换机需要5K个接口,相对100GE技术减少75%。
为此,CloudEngine 16800全面升级了硬件交换平台,在正交架构基础上,突破超高速信号传输、超强散热、高效供电等多项技术难题,不仅支持10G→40G→100G→400G端口平滑演进能力,还使得单槽位可提供业界最高密度48端口400GE线卡,单机提供业界最大的768端口400GE交换容量,交换能力高达业界平均的5倍,满足AI时代流量倍增需求。同时,CloudEngine 16800在PCB板材、工艺、散热,供电等多方面都进行了革命性的技术改进和创新,使得单比特功耗下降50%。
特征3.使能自动驾驶网络,秒级故障识别、分钟级故障自动定位
当数据中心为人工智能提供了充分的技术支撑去创新时,人工智能也给数据中心带来巨大利益,如借助telemetry等技术将异常信息送到集中的智能运维平台进行大数据分析,这极大提升了网络的运行和运维效率,降低运维难度和人力成本。但是当前计算和存储正在融合,数据中心服务器集群规模越来越大,分析的流量成千倍的增长,信息上报或者获取频度从分钟级到毫秒级,再加上信息的冗余,这些都使得智能运维平台的规模剧增,智能运维平台对性能压力不堪重负降低了处理的效率。如何减轻智能运维平台的压力,在最靠近服务器,最靠近数据的网络设备具有智能分析和决策功能,成为提升运维效率的关键。
CloudEngine 16800基于内置的AI芯片,可大幅度提升“网络边缘”即设备级的智能化水平,使得交换机具备本地推理和实时快速决策的能力;通过本地智能结合集中的FabricInsight网络分析器,构建分布式AI运维架构,可实现秒级故障识别和分钟级故障自动定位,使能“自动驾驶网络”加速到来。该架构还可大幅提升运维系统的灵活性和可部署性。
引领数据中心网络从云时代迈入AI时代
自2012年进入数据中心网络市场以来,目前华为已服务于全球6400+个用户,广泛部署在中国、欧洲、亚太、中东、非洲、拉美等全球各地,帮助互联网、金融、政府、制造、能源、大企业等多个行业的客户实现了数字化转型。
2017年华为进入Gartner数据中心网络挑战者象限;2018年进入Forrester数据中心SDN网络硬件平台领导者;2013-2018年,全球数据中心交换机厂商中,华为连续六年复合增长率第一,发展势头强劲。
早在2012年,华为就以“云引擎,承未来”为主题,发布了CloudEngine 12800数据中心核心交换机,七年以来这款面向云时代的交换机很好的支撑了数据中心业务弹性伸缩、自动化部署等核心诉求。
而随着本次华为率先将AI技术引入数据中心交换机、并推出面向AI时代的数据中心交换机CloudEngine 16800,华为也在引领数据中心网络从云时代迈入AI时代。
2018年,华为轮值董事长徐直军宣布:将人工智能定位为新的通用技术,并发布了人工智能发展战略,全面将人工智能技术引入到智能终端、云和网络等各个领域。而本次华为发布的业界首款面向AI时代数据中心交换机CloudEngine 16800,也是华为在网络领域持续践行AI战略的集中体现。
而作为华为AI发展战略以及全栈全场景AI解决方案的一个重要组成部分,CloudEngine 16800不仅是业界首款面向AI时代的数据中心交换机,还将重新定义数据中心网络的代际切换,助力客户使能和加速AI商用进程,引领数据中心真正进入AI时代。
大厂掀起“养机”浪潮
在新基建的浪潮中,腾讯、阿里等大厂纷纷投入千亿布局建造超大规模数据中心。大厂为了“养机”也动用了各种新技术。数据中心作为基础设施,之前 一直在底层无人问津,不过随着数字化的快速推进,数据中心的变化将更能体现新基建“基建+科技”的内涵。对于数据中心而言,进行技术创新,能够合理存储和处理数据,满足上层需求,支撑数字经济腾飞,才能实现其真正价值。
下一波技术创新的制高点随着大厂的建设提速,国内数据中心遍地开花。据中国产业信息网统计,2020年全球IDC处理的数据流量将达到15.3ZB,占全球产生的流量99.35%;从数据可知IDC主导着全球的数据流量处理。
现在数据中心向着空间集约化、单机大型化的方向发展。超大规模的大型数据中心在2019年末增至504个,还有151个处于不同建设阶段的数据中心。集约化的发展使得单体机房的利用率得以提升,有助于发挥规模效应,降低前期建设成本以及后期运营成本,对于大公司来说,头部效应会更加明显。
数据中心发展过程中的痛点1. 超大规模数据中心背后是惊人的耗电量。
服务器年功耗连续上升,机柜功率不足的老旧机房为了不掉电,以至于通过空置机位的办法来解决问题。这样不仅造成了空间的利用率低,也会造成电力利用率的下降,同时还形成不必要的浪费。据预测,2020年中国数据中心耗电量为2962亿千瓦时[3] ,超越三峡发电量,所以说解决能耗问题刻不容缓。
2. 数据中心安全运行指标与日俱增
数据中心需要完善的安全出入管理规定和消防系统、以及具备事故应急和人员安全应急流程制定的能力。保证所有基础设施正常运行的同时,还需要及时对所有设备进行维护和修理。
3. 令人崩溃的运维
半夜故障工单催人醒,处理不慎易进坑。日常巡检是数据中心运维过程中最重要的一环,通过运维人员日复一日,重复上千次抄表中保持警觉性发现设备存在的隐患。纯粹依靠人力并非行业发展所需,日常运维应借助合适的辅助工具,让有限的人力摆脱机械性的工作。
那么如何让数据中心做到绿色发展,智能规划,轻松运维?Hightopo 和国内其他公司都在积极的回答这个问题。
建立可视化的运维管理平台 痛点迎刃而解可视化重塑数据中心机房
针对数据中心系统复杂、多场景和动态性的特点。以 HTML5 的 WebGL 标准实现 3D 的图形渲染技术,以及基于浏览器内核嵌入到小程序实现更方便传播。并采用hightopo轻量架构使其支持跨平台展示,实现多端口海量数据的分析。
数据中心环境可视化
利用3D仿真技术,对机房内多种设备进行建模,对设备进行实时监控以及全生命周期维护。同样为了确保数据中心机房正常运转,运维系统也具备烟雾温湿监控、动力监控、门禁等监控功能,实时监测机房内部环境,及时发现存在的问题,可远程控制系统调控运行状态。
资产与能耗管理可视化
为了解决数据中心能耗过大的问题,系统对数据中心整体环境的年度用电量、机柜租用率、楼宇IT用电量、柴油发电机、电气容量等进行实时监控并提供相关历史数据,方便管理者进行节能调整。还支持对资产准确定位,记录设备型号和状态,确保机柜高使用率,避免资源浪费,细化运维能节省约20%的总运营成本。
可视化运维管理
通过可视化管理,改变数据中心的运维模式。管理者可通过线上监控系统了解设备健康状况,可远程查看机柜的检修记录、履历信息和历史故障,为评估设备安全提供了直观的数据基础。运维人员摆脱了机械性的工作,缓解运维压力。同时也对数据中心人员分配提供了人性化的方案。
迎接智能运维时代由于边缘计算和5G的大带宽所产生的巨额流量使得数据中心建设遍地开花,大规模且密集的IDC更需要精细、自动、可视化的管理。正如 Hightopo 所提供的数据中心机房可视化解决方案,帮助企业在能耗、运维、和人力资源上做到精细化管理,使其走向节能增效的发展道路。在数字经济腾飞的时代下,数据中心可视化改造更应未雨绸缪。
参考资料: 官网——Web组态
百度百科——图扑软件
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)