3.1LED的效率[2]
3.1.1用于非显示的LED
用于非显示时,使用功率效率ηp与光学效率ηo。
1.功率效率ηp:即将输入的电功率Pi转换成辐射的功率Pe的效率。即
ηp=Pe/Pi×100%(3-1)
要提高ηp,就是要提高在一定电功率输入下的辐射功率输出,也就是减小器件的无用电功率损耗。如作好欧姆接触以减小焦耳热的损耗功率等。
2.光学效率ηo:即外量子效率ηqe与内量子效率ηqi的比。即
ηo=ηqe/ηqi (3-2)
光学效率可用来比较外量子效率的相对大小。所谓量子效率是指注入载流子复合而产生的光量子的效率。但由于内吸收和外反射等原因,使得产生的光量子效率等于辐射复合所产生的光子数N1T与激发时注入的电子空穴对数G之比。即
ηqi=N 1T/G (3-3)
由于半导体材料的折射率较高,反射和吸收的损失很大,所以辐射复合所产生的光量子不能全部射出器件之外。外量子效率是射出的光子数NT与注入的电子空穴对数G之比。即
ηqe=NT/G (3-4)
3.1.2用于显示的LED
用于显示的LED,有实际意义的是流明效率ηL(光度效率或发光效率)。即用人眼衡量的效率,它表示消耗单位电功率Pi所得到的光通量F。即
ηL=F/Pi(lm/W) (3-5)
ηL=ηp•ηb (3-6)
而
式中,ηb为照明功率,它是辐射功率转换成光通量的效率。即
ηb=F/Pe(lm/W)(3-7)
显然,提高ηL的方法就是提高ηp和ηb。即使发射光谱与视见函数有最大的重迭。
3.2发光光谱
发光光谱是指发光的相对强度(或能量)随波长(或频率)变化的分布曲线。[3]它直接决定着LED的发光颜色并影响它的流明效率。发射光谱的形成是由材料的种类、性质以及发光中心的结构决定的,而与器件的几何形状和封装方式无关。描述光谱分布的两个主要参量是它的峰值波长和半强度宽度(称为半宽度)。
对于辐射跃迁所发射的光子,其波长λ与跃迁前后的能量差ΔE之间的关系为
λ=hc/ΔE。对于发光二极管,复合跃迁前后的能量差大体就是材料的禁带宽度决定的。对大多数半导体材料来讲,由于折射率较大,在发射逸出半导体之前,可能在样品内已经过了多次反射。因为段波光比长波光更容易被吸收,所以峰值波长相应的光子能量比禁带宽度小些。例如GaAs的峰值波长出现在1.1eV,比室温下的禁带宽度少0.3eV。图3-1给出了GaAs0.6P0.4和的发射光谱。当GaAs1–xPx中的x值不同时,峰值波长在620~680nm之间变化,谱线半宽度大致为20~30nm。GaP发光的峰值波长在700nm附近,半宽度大约为100nm。
图3-1 GaAs0.6P0.4与GaP的发光光谱
峰值光子的能量还与温度有关,它随温度的增长而减少。在结温上升时,谱带波长以0.2~0.3nm/℃的比例向长波方向移动
3.3伏安特性
LED的伏安特性如图3-2所示,它与普通二极管的伏安特性大致相同。电压小于开启点的电压值时无电流,电压一超过开启点就显示出欧姆导通特性。[4]这时正向电流与电压的关系为
i =i0exp(eV/mkT) (3-8)
式中,m为复合因子。在宽禁带半导体中,当电流i<0.1mA时,通过结内深能级进行复合的空间复合电流起支配作用,这时m =2。电流增大后,扩散电流占优势时,m =1。因而实际测得的m值大小可以标志器件发光特性的好坏。
反向击穿电压一般在-1.5V以上。
图3-2 发光二极管的伏安特性曲线
3.4发光亮度与电流的关系[2]
LED的发光亮度B是单位面积发光强度的量度。在辐射发光发生在P区的情况下,发光亮度B与电子扩散电流idn之间有如下关系:
B ∝idnτ/eτR (3-9)
式中,τ是载流子辐射复合寿命τR和非辐射寿命τNR的函数。
图3-3 GaAs1–xPx、Ga1-xAlxAs和GaP发光二极管的亮度与电流密度的关系
图3-3给出了GaAs1–xPx、Ga1-xAlxAs和GaP(绿)发光二极管的亮度与电流密度的关系。这些亮度随电流密度近似成正比增加而不易饱和的管子,适合于在脉冲下使用。因为脉冲状态工作不易发热,在平均电流与直流电流相等的情况下可以得到更高的亮度。
3.5LED的寿命
LED的寿命定义为亮度降低到原有亮度的一半时所经历的时间。二极管的寿命一般都很长,在电流密度小于1A/cm2时,一般可达106h,最长可达109h。随着工作时间的加长,亮度下降的现象叫老化。老化的快慢与工作电流密度有关。随着电流密度的加大。老化变快,寿命变短。
3.6响应时间
在快速显示时,标志器件对信息反应速度的物理量叫响应时间,即指器件启亮(上升)与熄灭(率减)时间的延迟。实验证明,二极管的上升时间随电流的增加而近似呈指数衰减。它的响应时间一般都很短,如GaAs1–xPx仅为几个ns,Gap约为100ns。在用脉冲电流驱动二极管时,脉冲的间隔和占空因数必须在器件响应时间所许可的范围内。
相对密度:在常用的白色颜料中,二氧化钛的相对密度最小,同等质量的白色颜料中,二氧化钛的表面积最大,颜料体积最高。 颜料名称 密度/(g/cm³) 颜料名称 锐钛型二氧化钛 3.8~3.9 硫酸铅 金红石型二氧化钛 4.2~4.3 氧化锌 板钛型二氧化钛 4.12~4.23 锌钡白 碱式碳酸铅 6.8~6.9 硫化锌 介电常数:由于二氧化钛的介电常数较高,因此具有优良的电学性能。在测定二氧化钛的某些物理性质时,要考虑二氧化钛晶体的结晶方向。例如,金红石型的介电常数,随晶体的方向不同而不同,当与C轴相平行时,测得的介电常数为180,与此轴呈直角时为90,其粉末平均值为114。锐钛矿型二氧化钛的介电常数比较低只有48。电导率:二氧化钛具有半导体的性能,它的电导率随温度的上升而迅速增加,而且对缺氧也非常敏感。例如,金红石型二氧化钛在20℃时还是电绝缘体,但加热到420℃时,它的电导率增加了107倍。稍微减少氧含量,对它的电导率会有特殊的影响,按化学组成的二氧化钛(TiO₂)电导率<10-10s/cm,而TiO1.9995的电导率则高达10-1s/cm。金红石型二氧化钛的介电常数和半导体性质对电子工业非常重要,该工业领域利用上述特性,生产陶瓷电容器等电子元器件。
硬度:按莫氏硬度10分制标度,金红石型二氧化钛为6~6.5,锐钛矿型二氧化钛为5.5~6.0,因此在化纤消光中为避免磨损喷丝孔而采用锐钛型。
熔点和沸点:由于锐钛矿型和板钛型二氧化钛在高温下都会转变成金红石型,因此板钛型和锐钛矿型二氧化钛的熔点和沸点实际上是不存在的。只有金红石型二氧化钛有熔点和沸点,金红石型二氧化钛的熔点为1850℃、空气中的熔点 (1830±15)℃、富氧中的熔点1879℃,熔点与二氧化钛的纯度有关。金红石型二氧化钛的沸点为 (3200±300)K,在此高温下二氧化钛稍有挥发性。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)