粘土的特性

粘土的特性,第1张

粘土这种柔可绕指的泥土在我国远古时期就被人们广泛使用,至仰韶文化时代制陶工艺技术就已达到相当成熟的水平。先民们利用粘土的塑性、焙烧性得到具有实用效果的抗水性的石质性器物——陶瓷器,它对人类的古代文明与文化发展曾起到相当大的作用。

粘土是一种含水铝硅酸盐产物,是由地壳中含长石类岩石经过长期风化和地质的作用而生成的,在自然界中分成广泛,种类繁多,藏量丰富,是一种宝贵的天然资源。

粘土具有颗粒细、可塑性强、结合性好,触变性过度,收缩适宜,耐火度高等工艺性能,因而,粘土是成为瓷器的基础。它主要有瓷土、陶土和耐火土粘土等三类,据矿物的结构与组成的不同,陶瓷工业所用粘土中的主要粘土矿物有高岭石类、蒙脱石类和伊利石(水云母)等三种,另外还有较少见的水铝石。

粘土矿物的主体化学成分是硅铝氧化物和水,其特征是与适量水结合可调成柔可绕指的软泥,具有可塑性,将塑性成形的泥团烧后会变成具有一定湿度的坚硬烧结体。正是由于这种特性使它与人类生活发生了联系。从久远的制瓷经历数万年的发展直到今天,仍是制瓷胎的最基本的原料。

粘土在引进制瓷胎体过程中起了重要的作用:是粘土的可塑性使陶瓷坯泥赖以成形的基础;是粘土使注浆泥料与釉料具有悬浮性与稳定性;粘土一般呈细分散颗粒,同时具有结合性;粘土的出现使其成为陶瓷坯体烧结时的主体,形成瓷器中莫来石晶体的主要来源。

晶体结构与晶体化学特点决定了它们的如下一些性质。①离子交换性。具有吸着某些阳离子和阴离子并保持于交换状态的特性。一般交换性阳离子是Ca2+、Mg2+、H+、K+、(NH4)+、Na+,常见的交换性阴离子是(SO4)2-、Cl-、(PO4)3-、(NO3)-。高岭石的阳离子交换容量最低,5~15毫克当量/100克;蒙脱石、蛭石的阳离子交换容量最高,100~150毫克当量/100克。产生阳离子交换性的原因是破键和晶格内类质同象置换引起的不饱和电荷需要通过吸附阳离子而取得平衡。阴离子交换则是晶格外露羟基离子的交代作用。②粘土-水系统特点。粘土矿物中的水以吸附水、层间水和结构水的形式存在。结构水只有在高温下结构破坏时才失去,但是吸附水、层间水以及海泡石结构孔洞中的沸石水都是低温水,经低温(100~150℃)加热后就可脱出,同时象蒙皂石族矿物失水后还可以复水,这是一个重要的特点。粘土矿物与水的作用所产生的膨胀性、分散和凝聚性、粘性、触变性和可塑性等特点在工业上得到广泛应用。③粘土矿物与有机质的反应特点。有些粘土矿物与有机质反应形成有机复合体,改善了它的性能,扩大了应用范围,还可作为分析鉴定矿物的依据。如蒙脱石中可交换的钙或钠被有机离子取代后形成有机复合体,使层间距离增大,从原有亲水疏油转变为亲油疏水,利用这种复合体可以制备润滑脂、油漆防沉剂和石油化工产品的添加剂。其他如蛭石、高岭石、埃洛石等也能与有机质形成复合体。此外,粘土矿物晶格内离子置换和层间水变化常影响光学性质的变化。蒙皂石族矿物中的铁、镁离子置换八面体中的铝,或者层间水分子的失去,都使折光率与双折射率增大。

土壤中最重要的粘土矿物,可以归纳为四个主要的类别:蒙脱石、高岭石、伊利石和蛭石。这些普通的黏粒类型的显著特征见表7—1。

蒙脱石是一种有膨胀晶格的粘土矿物,它具有内吸附面和外吸附面。它是三层黏粒,由一层Al氢氧化合物夹在两层Si氧化物之间而形成的。一个给定的黏土晶体由若干片这种三层分子所组成。片或层可以在它们之间被其他物质(例如水)所穿透,因此造成膨胀和收缩。正如其他2/1粘土矿物一样,内表面和外表面的负电荷来自四面体层中Al代Si和八面体层中二价阳离子(例如Mg)代Al的同晶置换。这些负电荷由交换性阳离子来满足。表7-1所显示的粘土矿物阳离子交换量的差异,部分地是由晶格中离子置换的程度不同造成的。

表7—1 四种普通粘土矿物的阳离子交换量和比表面积

(据Stevenson,1982)

黏粒上的其他电荷,是由于断键而在结晶边缘发展的,负和正的都有。负电荷来自暴露的OH基,它们随pH的变化而解离,称为“pH—决定”电荷,与由同晶置换而造成的固定电荷相对应。

伊利石黏粒也是三层型的,它们每个单位晶格的负电荷高于蒙脱石,K+离子处于相邻四面体层之间,被它们紧紧夹持,使之不收缩膨胀,或有机分子进入层间空隙,故称为“非膨胀2:1”粘土矿物。这些粘土矿物比膨胀类型的具有较低的阳离子交换量和比表面积。

高岭石是一种两层型粘土矿物,它是由Si氧化物和Al氢氧化合物互层而组成的。与蒙脱石和其他三层粘土矿物相反,其阳离子和阴离子交换性质主要来自颗粒边缘的不饱和键。高岭石的一个表层是由Al八面体位置中的OH组成的,它提供了吸附某些有机分子的特殊机会。

高岭石和其他粘土矿物断裂边缘上负电荷的来源,据认为是暴露的OH基质子(H+)的解离。这点是可能的,因为边缘的氧原子是与一个而不是两个Si或 Al原子相接触。推测四面体OH(与Si缔合的)中的H比八面体OH更易解离。可以想到,其解离程度强烈地取决于pH。

在黏粒边缘也可以有不连续的正电荷位置,特别是在低pH条件下,通过OH基的质子化( OH2+)产生的。

在自然状态下,粘土矿物是水化的。这种表面水较正常水排列不紧密(较有序),称为“类冰”结构。被吸附的离子在其表面上与水分子呈某种程度地缔合,它们本身成为水合的。水合和配位水分子在吸附反应中起着重要作用。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/336201.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-04
下一篇2023-05-04

发表评论

登录后才能评论

评论列表(0条)

    保存